Physics for Scientists and Engineers: Foundations and Connections
Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 24, Problem 67PQ

(a)

To determine

The magnitude of the electric field along the ring’s axis at a distance of 2.50cm from its centre.

(a)

Expert Solution
Check Mark

Answer to Problem 67PQ

The magnitude of the electric field along the ring’s axis at a distance of 2.50cm from its centre is 5.86×106N/C.

Explanation of Solution

Write the equation for the electric field along the axis of a charged ring.

E=kQy(R2+y2)3/2

Here, E is the electric field, Q is the charge, R is the radius and y is the distance from the ring’s centre.

Conclusion:

Substitute 8.99×109Nm2/C2 for k, 54.0μC for Q, 12.5cm for R and 2.50cm for y in the above equation to find E.

E=(8.99×109Nm2/C2)(54.0μC)(2.50cm)((12.5cm)2+(2.50cm)2)3/2=(8.99×109Nm2/C2)((54.0μC)(106C1μC))((2.50cm)(102m1cm))(((12.5cm)(102m1cm))2+((2.50cm)(102m1cm))2)3/2=5.86×106N/C

Thus, the magnitude of the electric field along the ring’s axis at a distance of 2.50cm from its centre is 5.86×106N/C.

(b)

To determine

The magnitude of the electric field along the ring’s axis at a distance of 12.5cm from its centre.

(b)

Expert Solution
Check Mark

Answer to Problem 67PQ

The magnitude of the electric field along the ring’s axis at a distance of 12.5cm from its centre is 1.10×107N/C.

Explanation of Solution

Write the equation for the electric field along the axis of a charged ring.

E=kQy(R2+y2)3/2

Conclusion:

Substitute 8.99×109Nm2/C2 for k, 54.0μC for Q, 12.5cm for R and 12.5cm for y in the above equation to find E.

E=(8.99×109Nm2/C2)(54.0μC)(12.5cm)((12.5cm)2+(12.5cm)2)3/2=(8.99×109Nm2/C2)((54.0μC)(106C1μC))((12.5cm)(102m1cm))(((12.5cm)(102m1cm))2+((12.5cm)(102m1cm))2)3/2=1.10×107N/C

Thus, the magnitude of the electric field along the ring’s axis at a distance of 12.5cm from its centre is 1.10×107N/C.

(c)

To determine

The magnitude of the electric field along the ring’s axis at a distance of 25.0cm from its centre.

(c)

Expert Solution
Check Mark

Answer to Problem 67PQ

The magnitude of the electric field along the ring’s axis at a distance of 25.0cm from its centre is 5.56×106N/C.

Explanation of Solution

Write the equation for the electric field along the axis of a charged ring.

E=kQy(R2+y2)3/2

Conclusion:

Substitute 8.99×109Nm2/C2 for k, 54.0μC for Q, 12.5cm for R and 25.0cm for y in the above equation to find E.

E=(8.99×109Nm2/C2)(54.0μC)(25.0cm)((12.5cm)2+(25.0cm)2)3/2=(8.99×109Nm2/C2)((54.0μC)(106C1μC))((25.0cm)(102m1cm))(((12.5cm)(102m1cm))2+((25.0cm)(102m1cm))2)3/2=5.56×106N/C

Thus, the magnitude of the electric field along the ring’s axis at a distance of 25.0cm from its centre is 5.56×106N/C.

(d)

To determine

The magnitude of the electric field along the ring’s axis at a distance of 2.00m from its centre.

(d)

Expert Solution
Check Mark

Answer to Problem 67PQ

The magnitude of the electric field along the ring’s axis at a distance of 2.00m from its centre is 1.21×105N/C.

Explanation of Solution

Write the equation for the electric field along the axis of a charged ring.

E=kQy(R2+y2)3/2

Conclusion:

Substitute 8.99×109Nm2/C2 for k, 54.0μC for Q, 12.5cm for R and 2.00m for y in the above equation to find E.

E=(8.99×109Nm2/C2)(54.0μC)(2.00m)((12.5cm)2+(2.00m)2)3/2=(8.99×109Nm2/C2)((54.0μC)(106C1μC))(2.00m)(((12.5cm)(102m1cm))2+(2.00m)2)3/2=1.21×105N/C

Thus, the magnitude of the electric field along the ring’s axis at a distance of 2.00m from its centre is 1.21×105N/C.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Uniformly charged ring of radius 10.0 cm has a total charge of 75.0 microcoulombs. Find the electric field (in MN/C) on the axis of the ring at 30.00 cm from the centre of the ring. O A. 6.41 in the positive x direction O B. 6.14 in the positive x direction OC. 6.40 in the negative x direction O D. 6.40 in the positive x direction
A uniformly charged rod (length = 2.0 %3D m, charge per unit length = 28 nC/m) is bent to form a semicircle. What is the magnitude of the electric field at the center of the circle? Select one: A. 527.79 N/C B. 263.89 N/C C. 791.68 N/C D. 175.93 N/C
Please asap

Chapter 24 Solutions

Physics for Scientists and Engineers: Foundations and Connections

Ch. 24 - A sphere with a charge of 3.50 nC and a radius of...Ch. 24 - Is it possible for a conducting sphere of radius...Ch. 24 - Prob. 7PQCh. 24 - For each sketch of electric field lines in Figure...Ch. 24 - Prob. 9PQCh. 24 - Two large neutral metal plates, fitted tightly...Ch. 24 - Given the two charged particles shown in Figure...Ch. 24 - Prob. 12PQCh. 24 - Prob. 13PQCh. 24 - A particle with charge q on the negative x axis...Ch. 24 - Prob. 15PQCh. 24 - Figure P24.16 shows three charged particles...Ch. 24 - Figure P24.17 shows a dipole. If the positive...Ch. 24 - Find an expression for the electric field at point...Ch. 24 - Figure P24.17 shows a dipole (not drawn to scale)....Ch. 24 - Figure P24.20 shows three charged spheres arranged...Ch. 24 - Often we have distributions of charge for which...Ch. 24 - Prob. 22PQCh. 24 - A positively charged rod with linear charge...Ch. 24 - A positively charged rod of length L = 0.250 m...Ch. 24 - Prob. 25PQCh. 24 - Prob. 26PQCh. 24 - A Find an expression for the position y (along the...Ch. 24 - The electric field at a point on the perpendicular...Ch. 24 - Prob. 29PQCh. 24 - Find an expression for the magnitude of the...Ch. 24 - What is the electric field at point A in Figure...Ch. 24 - A charged rod is curved so that it is part of a...Ch. 24 - If the curved rod in Figure P24.32 has a uniformly...Ch. 24 - aA plastic rod of length = 24.0 cm is uniformly...Ch. 24 - A positively charged disk of radius R = 0.0366 m...Ch. 24 - A positively charged disk of radius R and total...Ch. 24 - A uniformly charged conducting rod of length =...Ch. 24 - Prob. 38PQCh. 24 - Prob. 39PQCh. 24 - Prob. 40PQCh. 24 - Prob. 41PQCh. 24 - Prob. 42PQCh. 24 - What are the magnitude and direction of a uniform...Ch. 24 - An electron is in a uniform upward-pointing...Ch. 24 - Prob. 45PQCh. 24 - Prob. 46PQCh. 24 - A very large disk lies horizontally and has...Ch. 24 - An electron is released from rest in a uniform...Ch. 24 - In Figure P24.49, a charged particle of mass m =...Ch. 24 - Three charged spheres are suspended by...Ch. 24 - Figure P24.51 shows four small charged spheres...Ch. 24 - Prob. 52PQCh. 24 - A uniform electric field given by...Ch. 24 - A uniformly charged ring of radius R = 25.0 cm...Ch. 24 - Prob. 55PQCh. 24 - Prob. 56PQCh. 24 - A potassium chloride molecule (KCl) has a dipole...Ch. 24 - Prob. 58PQCh. 24 - Prob. 59PQCh. 24 - Prob. 60PQCh. 24 - A total charge Q is distributed uniformly on a...Ch. 24 - A simple pendulum has a small sphere at its end...Ch. 24 - A thin, semicircular wire of radius R is uniformly...Ch. 24 - Prob. 64PQCh. 24 - Prob. 65PQCh. 24 - Prob. 66PQCh. 24 - Prob. 67PQCh. 24 - Prob. 68PQCh. 24 - A thin wire with linear charge density =0y0(14+1y)...Ch. 24 - Prob. 70PQCh. 24 - Two positively charged spheres are shown in Figure...Ch. 24 - Prob. 72PQCh. 24 - Prob. 73PQCh. 24 - Prob. 74PQCh. 24 - A conducting rod carrying a total charge of +9.00...Ch. 24 - Prob. 76PQCh. 24 - A When we find the electric field due to a...Ch. 24 - Prob. 78PQCh. 24 - Prob. 79PQCh. 24 - Prob. 80PQCh. 24 - Prob. 81PQCh. 24 - Prob. 82PQ
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY