Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN: 9781133939146
Author: Katz, Debora M.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 24, Problem 22PQ
To determine
Draw the graph for the electric field of charged rod which satisfies the equation
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A uniformly charged rod of length L = 1.2 m lies along the x-axis with its right end at the origin. The rod has a total charge of Q = 6.8 μC. A point P is located on the x-axis a distance a = 2.4 m to the right of the origin.Integrate the electric field contributions from each slice over the length of the rod to write an equation for the net electric field E at point P.
A uniformly charged rod of length L = 1.2 m lies along the x-axis with its right end at the origin. The rod has a total charge of Q = 6.8 μC. A point P is located on the x-axis a distance a = 2.4 m to the right of the origin.Write an equation for the electric field dE at point P due to the thin slide of the rod dx. Give your answers in terms of the variables Q, L, x, a, dx, and the Coulomb constant, k. Notice that the coordinate x will be less than zero over the length of the rod.
A particle with a charge of -3C sits at position (3, 4, 5)m. What is the y-component of the electric field at the origin (0, 0, 0)m? Your answer will be proportional to k = 8.99 x 10 9 (N x k). For simplicity in entering your answer, just provide N.
Chapter 24 Solutions
Physics for Scientists and Engineers: Foundations and Connections
Ch. 24.2 - In a few sentences, explain how you know that...Ch. 24.2 - What is the magnitude of the electric field due to...Ch. 24.3 - Which lines in Figure 24.7 cannot represent an...Ch. 24.4 - Figure 24.10 shows a source that consists of two...Ch. 24.4 - A water molecule is made up of two hydrogen atoms...Ch. 24.5 - a. Figure 24.22A shows a rod of length L and...Ch. 24 - The terms electrostatic force and electrostatic...Ch. 24 - Prob. 2PQCh. 24 - A sphere has a charge of 89.5 nC and a radius of...Ch. 24 - Prob. 4PQ
Ch. 24 - A sphere with a charge of 3.50 nC and a radius of...Ch. 24 - Is it possible for a conducting sphere of radius...Ch. 24 - Prob. 7PQCh. 24 - For each sketch of electric field lines in Figure...Ch. 24 - Prob. 9PQCh. 24 - Two large neutral metal plates, fitted tightly...Ch. 24 - Given the two charged particles shown in Figure...Ch. 24 - Prob. 12PQCh. 24 - Prob. 13PQCh. 24 - A particle with charge q on the negative x axis...Ch. 24 - Prob. 15PQCh. 24 - Figure P24.16 shows three charged particles...Ch. 24 - Figure P24.17 shows a dipole. If the positive...Ch. 24 - Find an expression for the electric field at point...Ch. 24 - Figure P24.17 shows a dipole (not drawn to scale)....Ch. 24 - Figure P24.20 shows three charged spheres arranged...Ch. 24 - Often we have distributions of charge for which...Ch. 24 - Prob. 22PQCh. 24 - A positively charged rod with linear charge...Ch. 24 - A positively charged rod of length L = 0.250 m...Ch. 24 - Prob. 25PQCh. 24 - Prob. 26PQCh. 24 - A Find an expression for the position y (along the...Ch. 24 - The electric field at a point on the perpendicular...Ch. 24 - Prob. 29PQCh. 24 - Find an expression for the magnitude of the...Ch. 24 - What is the electric field at point A in Figure...Ch. 24 - A charged rod is curved so that it is part of a...Ch. 24 - If the curved rod in Figure P24.32 has a uniformly...Ch. 24 - aA plastic rod of length = 24.0 cm is uniformly...Ch. 24 - A positively charged disk of radius R = 0.0366 m...Ch. 24 - A positively charged disk of radius R and total...Ch. 24 - A uniformly charged conducting rod of length =...Ch. 24 - Prob. 38PQCh. 24 - Prob. 39PQCh. 24 - Prob. 40PQCh. 24 - Prob. 41PQCh. 24 - Prob. 42PQCh. 24 - What are the magnitude and direction of a uniform...Ch. 24 - An electron is in a uniform upward-pointing...Ch. 24 - Prob. 45PQCh. 24 - Prob. 46PQCh. 24 - A very large disk lies horizontally and has...Ch. 24 - An electron is released from rest in a uniform...Ch. 24 - In Figure P24.49, a charged particle of mass m =...Ch. 24 - Three charged spheres are suspended by...Ch. 24 - Figure P24.51 shows four small charged spheres...Ch. 24 - Prob. 52PQCh. 24 - A uniform electric field given by...Ch. 24 - A uniformly charged ring of radius R = 25.0 cm...Ch. 24 - Prob. 55PQCh. 24 - Prob. 56PQCh. 24 - A potassium chloride molecule (KCl) has a dipole...Ch. 24 - Prob. 58PQCh. 24 - Prob. 59PQCh. 24 - Prob. 60PQCh. 24 - A total charge Q is distributed uniformly on a...Ch. 24 - A simple pendulum has a small sphere at its end...Ch. 24 - A thin, semicircular wire of radius R is uniformly...Ch. 24 - Prob. 64PQCh. 24 - Prob. 65PQCh. 24 - Prob. 66PQCh. 24 - Prob. 67PQCh. 24 - Prob. 68PQCh. 24 - A thin wire with linear charge density =0y0(14+1y)...Ch. 24 - Prob. 70PQCh. 24 - Two positively charged spheres are shown in Figure...Ch. 24 - Prob. 72PQCh. 24 - Prob. 73PQCh. 24 - Prob. 74PQCh. 24 - A conducting rod carrying a total charge of +9.00...Ch. 24 - Prob. 76PQCh. 24 - A When we find the electric field due to a...Ch. 24 - Prob. 78PQCh. 24 - Prob. 79PQCh. 24 - Prob. 80PQCh. 24 - Prob. 81PQCh. 24 - Prob. 82PQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A thin rod of length L=11.7 m carries a uniform charge density =0.12 µC / m along its length. Take Coulomb's constant as k=9 x 10° N m² / C* Determine the magnitude of the electric field at point A. Express your answer using 1 decimal place without the units. A x(m) 20arrow_forwardO 3 0 1 Determine the length element, dL = Determine the charge element, dQ Determine the distance, s = Determine the so-called, cos(a) = Determine the integrand, J Determine the lower bound of the integral: 11 Determine the upper bound of the integral: Determine the final result of the integration: NOTE: • Please use k in your answers. Please do not use &o.arrow_forwardFive charged particles are equally spaced around a semicircle of radius 100 mm, with one particle at each end of the semicircle and the remaining three spaced equally between the two ends. The semicircle lies in the region x<0 of an xy plane, such that the complete circle is centered on the origin. If each particle carries a charge of 6.00 nC , what is the electric field at the origin? Where could you put a single particle carrying a charge of -5.00 nC to make the electric field magnitude zero at the origin?arrow_forward
- The figure below shows a dipole. If the positive particle has a charge of 36.9 mC and the particles are 2.62 mm apart, what is the electric field at point A located 2.00 mm above the dipole's midpoint? (Express your answer in vector form.)arrow_forwardPlease solve asap and explain how you reached that solution properly. Thank you in advance!arrow_forwardA sphere is attached to a thread of length L = 21.7 cm and suspended from the ceiling, as shown in the figure. A uniform electric field points to the right in the figure. When ? = 14.3°, the sphere is in equilibrium. Find the net charge on the sphere (in µC). What If? If the electric field is suddenly turned off, what is the speed of the sphere at the bottom of its swing (in m/s)?arrow_forward
- Two identical thin rods of length L are each charged with a positive charge q that is uniformly distributed on each rod. The rods are arranged parallel to each other along the x direction and are separated by a distance 2d, as shown in the figure below. Determine the electric field at point P, which is located a distance d from the right endpoint of each rod. Hint: You will eventually need the following integral: น 1 S (a²+u²)3/2 du = − + C √a²+u²arrow_forwardThe figure below shows a dipole. If the positive particle has a charge of 40.7 mC and the particles are 2.80 mm apart, what is the electric field at point A located 2.00 mm above the dipole's midpoint? (Express your answer in vector form.) É = N/C y d/2 d/2arrow_forwardThree charged particles are at the corners of an equilateral triangle as shown in the figure below. (Let q = 4.00 µC, and L = 0.750 m.) Three charged particles lie in the x y coordinate plane at the vertices of an equilateral triangle with side length L. Positive charge q is at the origin. A charge of 7.00 µC is in the first quadrant, along a line 60.0° counterclockwise from the positive x-axis. A charge of −4.00 µC is at (L, 0). (a) Calculate the electric field at the position of charge q due to the 7.00-µC and −4.00-µC charges.Once you calculate the magnitude of the field contribution from each charge you need to add these as vectors.kN/C î + You have given the magnitude of the field due to the 7.00-µC charge. What is the y component of this field? kN/C ĵ(b) Use your answer to part (a) to determine the force on charge q.mN î + mN ĵarrow_forward
- The two charges are separated by a distance of 2a and point P is at a distance from the midpoint between the two charges (Figure 1), Q > 0. Figure +Q a a x < 1 of 1 P Determine the magnitude of the electric field at the point P. Express your answer in terms of Coulomb's constant k, and the variables Q, x, and a. E = Submit Part B VE ΑΣΦ Request Answer Determine the direction of the electric field at the point P. to the right upward downward ? to the leftarrow_forwardCan you help me answer the first two questions, I don't know what the answer is.arrow_forwardThe point P is on the axis of a ring of charge, and all vectors shown lie in the yz plane. The negatively charged ring lies in the xz plane. The vector that correctly represents the direction of the electric field at point P is Question 1 options: 1 2 3 4 5arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY