![EBK GENERAL CHEMISTRY](https://www.bartleby.com/isbn_cover_images/9780133400588/9780133400588_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
The pH of the solution should be determined.
Concept introduction:
A complex ion is formed when a metal ion reacts with a Lewis base in solution. This reaction is defined in terms of
The Metal ion which is positively charged functions as a Lewis acid and Lewis base or the ligand has one or more lone pairs of electrons. For example, Cu2+, which is a highly charged and small metal ion having a significant tendency to function as Lewis acids, consequently exhibiting the highest affinity to form complex ions.
The development of a complexion is a stepwise procedure, and every step has its equilibrium constant. When two of the equations are added together, the equilibrium constants multiply. The Equilibrium Constant reflects the concentration in a reaction, which is the molarity, written as moles per liter (M = mol/L).
The products of a reaction are present in the numerator, and the denominator has the reactants. The alphabets in upper-case are the molar concentrations of the reactants and products, and the alphabets in lower-case are the
This implies that the pH of any solution is the log of the hydrogen ion concentration of that solution. For the calculation of pH, the log of the hydrogen ion concentration is selected, and the sign is reversed to obtain the answer.
(b)
Interpretation:
The concentration of
Concept introduction:
A complex ion is formed when a metal ion reacts with a Lewis base in solution. This reaction is defined in terms of chemical equilibrium. A complexion comprises of a ligand and a metal ion as a result of an interaction of Lewis acid-base. The Metal ion which is positively charged functions as a Lewis acid and Lewis base or the ligand has one or more lone pairs of electrons. For example, Cu2+, which is a highly charged and small metal ion having a significant tendency to function as Lewis acids, consequently exhibiting the highest affinity to form complex ions.
The development of a complexion is a stepwise procedure, and every step has its equilibrium constant. When two of the equations are added together, the equilibrium constants multiply. The Equilibrium Constant reflects the concentration in a reaction, which is the molarity, written as moles per liter (M = mol/L).
The products of a reaction are present in the numerator, and the denominator has the reactants. The alphabets in upper-case are the molar concentrations of the reactants and products, and the alphabets in lower-case are the stoichiometric coefficients which balance the equation.
(c)
Interpretation:
Whether the pH of the solution can be maintained so that does not exceed 1×10-6 M.
Concept introduction:
A complex ion is formed when a metal ion reacts with a Lewis base in solution. This reaction is defined in terms of chemical equilibrium. A complexion comprises of a ligand and a metal ion as a result of an interaction of Lewis acid-base.
The Metal ion which is positively charged functions as a Lewis acid and Lewis base or the ligand has one or more lone pairs of electrons. For example, Cu2+, which is a highly charged and small metal ion having a significant tendency to function as Lewis acids, consequently exhibiting the highest affinity to form complex ions.
The development of a complexion is a stepwise procedure, and every step has its equilibrium constant. When two of the equations are added together, the equilibrium constants multiply. The Equilibrium Constant reflects the concentration in a reaction, which is the molarity, written as moles per liter (M = mol/L).
The products of a reaction are present in the numerator, and the denominator has the reactants. The alphabets in upper-case are the molar concentrations of the reactants and products, and the alphabets in lower-case are the stoichiometric coefficients which balance the equation.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 24 Solutions
EBK GENERAL CHEMISTRY
- In the video, we looked at the absorbance of a certain substance and how it varies depending on what wavelength of light we are looking at. Below is a similar scan of a different substance. What color BEST describes how this substance will appear? Absorbance (AU) Violet Blue Green Orange 1.2 1.0- 0.8- 0.6- 0.4- 0.2 0.0 450 500 550 600 650 700 Wavelength (nm) violet indigo blue green yellow orange red Red O Cannot tell from this information In the above graph, what causes -450 nm wavelength of light to have a higher absorbance than light with a -550 nm wavelength? Check all that are true. The distance the light travels is different The different data points are for different substances The concentration is different at different times in the experiment Epsilon (molar absortivity) is different at different wavelengthsarrow_forward5. a. Data were collected for Trial 1 to determine the molar mass of a nonvolatile solid solute when dissolved in cyclo- hexane. Complete the table for the analysis (See Report Sheet). Record calculated values with the correct number of significant figures. B. Freezing Point of Cyclohexane plus Calculation Zone Unknown Solute 2. Mass of cyclohexane (g) 10.14 Part C.4 3. Mass of added solute (g) 0.255 C. Calculations 1. k; for cyclohexane (°C⚫ kg/mol) 20.0 2. Freezing point change, AT, (°C) 3.04 Part C.6 3. Mass of cyclohexane in solution (kg) 4. Moles of solute, total (mol) Show calculation. 5. Mass of solute in solution, total (g) 6. Molar mass of solute (g/mol) Show calculation.arrow_forwardDraw and name the R groups of all 20 amino acids.arrow_forward
- 3. Two solutions are prepared using the same solute: Solution A: 0.14 g of the solute dissolves in 15.4 g of t-butanol Solution B: 0.17 g of the solute dissolves in 12.7 g of cyclohexane Which solution has the greatest freezing point change? Show calculations and explain.arrow_forward2. Give the ground state electron configuration (e.g., 02s² σ*2s² П 2p²) for these molecules and deduce its bond order. Ground State Configuration Bond Order H2+ 02- N2arrow_forward1. This experiment is more about understanding the colligative properties of a solution rather than the determination of the molar mass of a solid. a. Define colligative properties. b. Which of the following solutes has the greatest effect on the colligative properties for a given mass of pure water? Explain. (i) 0.01 mol of CaCl2 (ii) 0.01 mol of KNO3 (iii) 0.01 mol of CO(NH2)2 (an electrolyte) (an electrolyte) (a nonelectrolyte)arrow_forward
- 5. b. For Trials 2 and 3, the molar mass of the solute was 151 g/mol and 143 g/mol respectively. a. What is the average molar mass of the solute ? b. What are the standard deviation and the relative standard deviation (%RSD) for the molar mass of the solute ?arrow_forwardShow work. Don't give Ai generated solutionarrow_forward2. Explain why ice cubes formed from water of a glacier freeze at a higher temperature than ice cubes formed from water of an under- ground aquifer. Photodynamic/iStockphotoarrow_forward
- Show reaction mechanism. don't give Ai generated solutionarrow_forward7. Draw the Lewis structures and molecular orbital diagrams for CO and NO. What are their bond orders? Are the molecular orbital diagrams similar to their Lewis structures? Explain. CO Lewis Structure NO Lewis Structure CO Bond Order NO Bond Order NO Molecular Orbital Diagram CO Molecular Orbital Diagramarrow_forward5. The existence of compounds of the noble gases was once a great surprise and stimulated a great deal of theoretical work. Label the molecular orbital diagram for XeF (include atom chemical symbol, atomic orbitals, and molecular orbitals) and deduce its ground state electron configuration. Is XeF likely to have a shorter bond length than XeF+? Bond Order XeF XeF+arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079243/9781305079243_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133611097/9781133611097_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580343/9781305580343_smallCoverImage.gif)