24.7 Skills for applying the wave model of light * Red light from a helium-neon gas laser has a wavelength of 630 nm and passes through two slits. (a) Draw a ray diagram to explain why you see a pattern of bright and dark bands on the screen. Show the path length difference. (b) Determine the angular deflection of the light to the first three bright bands when incident on narrow slits separated by 0.40 mm. (c) Determine the distance between the centers of the 0th and 2nd order bright bands when projected on a screen located 5.0 m from the slits. (d) List all of the assumptions that you made in your calculations.
24.7 Skills for applying the wave model of light * Red light from a helium-neon gas laser has a wavelength of 630 nm and passes through two slits. (a) Draw a ray diagram to explain why you see a pattern of bright and dark bands on the screen. Show the path length difference. (b) Determine the angular deflection of the light to the first three bright bands when incident on narrow slits separated by 0.40 mm. (c) Determine the distance between the centers of the 0th and 2nd order bright bands when projected on a screen located 5.0 m from the slits. (d) List all of the assumptions that you made in your calculations.
* Red light from a helium-neon gas laser has a wavelength of 630 nm and passes through two slits. (a) Draw a ray diagram to explain why you see a pattern of bright and dark bands on the screen. Show the path length difference. (b) Determine the angular deflection of the light to the first three bright bands when incident on narrow slits separated by 0.40 mm. (c) Determine the distance between the centers of the 0th and 2nd order bright bands when projected on a screen located 5.0 m from the slits. (d) List all of the assumptions that you made in your calculations.
Three point-like charges in the attached image are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 38.0 cm, and the point (C) is located half way between q1 and q3 along the side. Find the magnitude of the electric field at point (C). Let q1 = −2.80 µC, q2 = −3.40 µC, and q3 = −4.50 µC. Thank you.
Three point-like charges are placed as shown in the attach image, where r1 = r2 = 44.0 cm. Find the magnitude of the electric force exerted on the charge q3. Let q1 = -1.90 uC, q2 = -2.60 uC, and q3 = +3.60 uC. Thank you.
The drawing attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m², while Surface (2) has an area of 3.90 m². The electric field in magnitude of 215 N/C. Find the magnitude of the electric flux through surface (1 and 2 combined) if the angle theta made between the electric field with surface (2) is 30.0 degrees. Thank you.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.