![Delmar's Standard Textbook Of Electricity](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.gif)
Concept explainers
The circuit in Figure 24-2 is connected to a 60-Hz line. The apparent power in the circuit is 48.106 VA. The resistor has a resistance of 12
![Check Mark](/static/check-mark.png)
The missing values in the table.
Answer to Problem 3PP
ET = 23.99 V | ER = 23.99 V | EL = 23.99 V | EC = 23.99 V |
IT = 2.004 A | IR = 1.999 A | IL =0.399 A | IC =0.533 A |
Z = 11.973 Ω | R = 12 Ω | XL = 60 Ω | XC = 45 Ω |
VA = 48.106 | P = 47.96 W | VARSL = 9.575 | VARSC = 12.791 |
PF = 99.725 % | ∠θ = 4.25° | L = 0.159 H | C = 58.94 µF |
Explanation of Solution
Given data :
The value of the inductor is given by,
The value of the capacitor is given by,
The impedance of the parallel circuit is given as,
To determine the value of total voltage across the parallel R-L-C circuit,
Since the circuit is parallel R-L-C circuit,
The total current flowing through the parallel RLC circuit will be,
The current flowing through the resistor in the parallel RLC circuit will be,
The current flowing through the inductor in the parallel RLC circuit will be,
The current flowing through the capacitor in the parallel RLC circuit will be,
The true power in the parallel circuit will be,
The reactive power of the inductor is given by,
The reactive power of the capacitor is given by,
The Power factor of the circuit is calculated as,
Power factor angle θ will be,
Want to see more full solutions like this?
Chapter 24 Solutions
Delmar's Standard Textbook Of Electricity
- Solve it in a different way than the previous solution that I searched forarrow_forwardA lossless uncharged transmission line of length L = 0.45 cm has a characteristic impedance of 60 ohms. It is driven by an ideal voltage generator producing a pulse of amplitude 10V and width 2 nS. If the transmission line is connected to a load of 200 ohms, sketch the voltage at the load as a function of time for the interval 0 < t < 20 nS. You may assume that the propagation velocity of the transmission is c/2. Answered now answer number 2. Repeat Q.1 but now assume the width of the pulse produced by the generator is 4 nS. Sketch the voltage at the load as a function of time for 0 < t < 20 nS.arrow_forwardSolve this experiment with an accurate solution, please. Thank you.arrow_forward
- A lossless uncharged transmission line of characteristic impedance Zo = 600 and length T = 1us is connected to a 180 load. If this transmission line is connected at t = 0 to a 90 V dc source with an internal resistance of 900, from a bounce diagram of this system sketch (a) the voltage at z=0, z=L, and z = L/2 for up to 7.25μs and (b) calculate the load voltage after an infinite amount of time.arrow_forwardA lossless uncharged transmission line of length L = 0.45 cm has a characteristic impedance of 60 ohms. It is driven by an ideal voltage generator producing a pulse of amplitude 10V and width 2 nS. If the transmission line is connected to a load of 200 ohms, sketch the voltage at the load as a function of time for the interval 0 < t < 20 nS. You may assume that the propagation velocity of the transmission is c/2.arrow_forwardThe VSWR (Voltage Standing Wave Ratio) is measured to be 2 on a transmission line. Find two values of the reflection coefficient with one corresponding to Z > Zo and the other to Zarrow_forwardA dc voltage of unknown value Vand internal resistance Reis connected through a switch to a lossless transmission line of Zo = 1000. If the first 5 μS of the voltages at z = 0 and z = L are observed to be as shown below, calculate Vo, RG, the load resistanceR,, and the transit time T. 100 + [V]:-0. V 90 [V]:-V 100 75 I, Տ 1,μs 2 4 6 0 2 4 6arrow_forwardA lossless open circuited transmission line behaves as an equivalent capacitance of Ceq = Tan (BL) Show for BL << 1 that Ceq = C'L where L is the length of the transmission line and wZo C' is the lumped parameter capacitance per unit length of the transmission line. Hint: For x small, Tan(x) = x.arrow_forward= A generator with VG 300V and R = 50 is connected to a load R = 750 through a 50 lossless transmission line of length L = 0.15 m. (a) Compute Zin, the input impedance of the line at the generator end. (b) Compute and V. (c) Compute the time-average power Pin delivered to the line. (d) Compute VL, IL, and the time-average power delivered to the load, PL (e) How does Pin compare to PL? Explain.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Delmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningPower System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage LearningElectricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305632134/9781305632134_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399128/9781337399128_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133702818/9781133702818_smallCoverImage.gif)