Vector Mechanics for Engineers: Statics and Dynamics
11th Edition
ISBN: 9780073398242
Author: Ferdinand P. Beer, E. Russell Johnston Jr., David Mazurek, Phillip J. Cornwell, Brian Self
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2.4, Problem 2.74P
Solve Prob. 2.73 assuming that point A is located 15° north of west and that the barrel of the gun forms an angle of 25° with the horizontal.
A gun is aimed at a point A located 35° east of north. Knowing that the barrel of the gun forms an angle of 40° with the horizontal and that the maximum recoil force is 400 N, determine (a) the x, y, and z components of that force, (b) the values of the angles θx, θy, and θz defining the direction of the recoil force. (Assume that the x, y, and z axes are directed, respectively, east, up, and south.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A force acts at the origin of a coordinate system in a direction defined by the angles
e = 70.9° and e = 144. 9°. Knowing that the y component of the force is
80 lb,
determine (a) the angle 0 and (b) the other components and the magnitude of the force.
A force acts at the origin of a coordinate system in a direction defined by the angles θx =70.9° and θy =144.9°. Knowing that the z component of the force is –52.0 lb, determine (a) the angle θz, (b) the other components and the magnitude of the force.
A force acts at the origin of a coordinate system in a direction defined by the angles θx =69.3° and θz =57.9°. Knowing that the y component of the force is –174.0 lb, determine (a) the angle θy, (b) the other components and the magnitude of the force.
Chapter 2 Solutions
Vector Mechanics for Engineers: Statics and Dynamics
Ch. 2.1 - Two forces are applied as shown to a hook....Ch. 2.1 - Two forces are applied as shown to a bracket...Ch. 2.1 - Prob. 2.3PCh. 2.1 - Prob. 2.4PCh. 2.1 - A stake is being pulled out of the ground by means...Ch. 2.1 - A telephone cable is clamped at A to the pole AB....Ch. 2.1 - A telephone cable is clamped at A to the pole AB....Ch. 2.1 - A disabled automobile is pulled by means of two...Ch. 2.1 - A disabled automobile is pulled by means of two...Ch. 2.1 - Two forces are applied as shown to a hook support....
Ch. 2.1 - A steel tank is to be positioned in an excavation....Ch. 2.1 - A steel tank is to be positioned in an excavation....Ch. 2.1 - A steel tank is to be positioned in an excavation....Ch. 2.1 - For the hook support of Prob. 2.10, determine by...Ch. 2.1 - Prob. 2.15PCh. 2.1 - Solve Prob. 2.1 by trigonometry.Ch. 2.1 - Solve Prob. 2.4 by trigonometry.Ch. 2.1 - For the stake of Prob. 2.5, knowing that the...Ch. 2.1 - 2.19 Two forces P and Q are applied to the lid of...Ch. 2.1 - 2.20 Two forces P and Q are applied to the lid of...Ch. 2.2 - Determine the x and y components of each of the...Ch. 2.2 - Determine the x and y components of each of die...Ch. 2.2 - Prob. 2.23PCh. 2.2 - Prob. 2.24PCh. 2.2 - Member BC exerts on member AC a force P directed...Ch. 2.2 - Member BD exerts on member ABC a force P directed...Ch. 2.2 - Prob. 2.27PCh. 2.2 - Cable AC exerts on beam AD a force P directed...Ch. 2.2 - The hydraulic cylinder BD exerts on member ABC a...Ch. 2.2 - The guy wire BD exerts on the telephone pole AC a...Ch. 2.2 - Determine the resultant of the three forces of...Ch. 2.2 - Determine the resultant of the three forces of...Ch. 2.2 - Determine the resultant of the three forces of...Ch. 2.2 - Determine the resultant of the three forces of...Ch. 2.2 - Knowing that = 35, determine the resultant of the...Ch. 2.2 - 2.36 Knowing that the tension in rope AC is 365 N,...Ch. 2.2 - Knowing that = 40, determine the resultant of the...Ch. 2.2 - Knowing that = 75, determine the resultant of the...Ch. 2.2 - 2.39 For the collar of Prob. 2.35, determine (a)...Ch. 2.2 - Prob. 2.40PCh. 2.2 - PROBLEM 2.41 Determine (a) the required tension in...Ch. 2.2 - PROBLEM 2.42 For the block of Problems 2.37 and...Ch. 2.3 - Two cables are tied together at C and loaded as...Ch. 2.3 - Two forces of magnitude TA = 8 kips and TB = 15...Ch. 2.3 - The 60-lb collar A can slide on a frictionless...Ch. 2.3 - A chairlift has been stopped in the position...Ch. 2.3 - Two cables are tied together at C and are loaded...Ch. 2.3 - Two cables are tied together at C and are loaded...Ch. 2.3 - Prob. 2.45PCh. 2.3 - Two cables are tied together at C and are loaded...Ch. 2.3 - 2 .47 Two cables are tied together at C and are...Ch. 2.3 - Knowing that = 20, determine the tension (a) in...Ch. 2.3 - Two cables are tied together at C and are loaded...Ch. 2.3 - Two cables are tied together at C and are loaded...Ch. 2.3 - Prob. 2.51PCh. 2.3 - 2.52 Two forces P and Q arc applied as shown to an...Ch. 2.3 - A welded connection is in equilibrium under the...Ch. 2.3 - A welded connection is in equilibrium under the...Ch. 2.3 - A sailor is being rescued using a boatswains chair...Ch. 2.3 - A sailor is being rescued using a boatswains chair...Ch. 2.3 - For the cables of Prob. 2.44, find the value of ...Ch. 2.3 - For the cables of Prob. 2.46, it is known that the...Ch. 2.3 - For the situation described in Fig. P2.48,...Ch. 2.3 - 2 .60 Two cables tied together at C are loaded as...Ch. 2.3 - A movable bin and its contents have a combined...Ch. 2.3 - Prob. 2.62PCh. 2.3 - Collar A is connected as shown to a 50-lb load and...Ch. 2.3 - Collar A is connected as shown to a 50-lb load and...Ch. 2.3 - Prob. 2.65PCh. 2.3 - A 200-kg crate is to be supported by the...Ch. 2.3 - A 600-lb crate is supported by several...Ch. 2.3 - Solve parts b and d of Prob. 2.67, assuming that...Ch. 2.3 - A load Q is applied to the pulley C, which can...Ch. 2.3 - An 1800-N load Q is applied to pulley C, which can...Ch. 2.4 - 2.71 Determine (a) the x, y, and z components of...Ch. 2.4 - 2. 72 Determine (a) the x, y, and z components of...Ch. 2.4 - A gun is aimed at a point A located 35 east of...Ch. 2.4 - Solve Prob. 2.73 assuming that point A is located...Ch. 2.4 - Prob. 2.75PCh. 2.4 - Prob. 2.76PCh. 2.4 - Cable AB is 65 ft long, and the tension in that...Ch. 2.4 - PROBLEM 2.78 Cable AC is 70 ft long, and the...Ch. 2.4 - Prob. 2.79PCh. 2.4 - Prob. 2.80PCh. 2.4 - Prob. 2.81PCh. 2.4 - Prob. 2.82PCh. 2.4 - Prob. 2.83PCh. 2.4 - Prob. 2.84PCh. 2.4 - 2.85 A frame ABC is supported in part by cable DBE...Ch. 2.4 - Prob. 2.86PCh. 2.4 - In order to move a wrecked truck, two cables are...Ch. 2.4 - In order to move a wrecked truck, two cables are...Ch. 2.4 - A rectangular plate is supported by three cables...Ch. 2.4 - A rectangular plate is supported by three cables...Ch. 2.4 - Find the magnitude and direction of the resultant...Ch. 2.4 - Prob. 2.92PCh. 2.4 - Knowing that the tension is 425 lb in cable AB and...Ch. 2.4 - Knowing that the tension is 510 lb in cable AB and...Ch. 2.4 - Prob. 2.95PCh. 2.4 - Prob. 2.96PCh. 2.4 - The boom OA carries a load P and is supported by...Ch. 2.4 - Fig. P2.97 2.98 For the boom and loading of Prob....Ch. 2.5 - Three cables are used to tether a balloon as...Ch. 2.5 - A container of mass m = 120 kg is supported by...Ch. 2.5 - A 150-lb cylinder is supported by two cables AC...Ch. 2.5 - A transmission tower is held by three guy wires...Ch. 2.5 - A container is supported by three cables that are...Ch. 2.5 - A container is supported by three cables that are...Ch. 2.5 - Three cables are used to tether a balloon as...Ch. 2.5 - Three cables are used to tether a balloon as...Ch. 2.5 - Prob. 2.103PCh. 2.5 - Prob. 2.104PCh. 2.5 - Prob. 2.105PCh. 2.5 - Prob. 2.106PCh. 2.5 - Three cables are connected at A, where the forces...Ch. 2.5 - Fig. P2.107 and P2.108 2.108 Three cables are...Ch. 2.5 - Prob. 2.109PCh. 2.5 - A rectangular plate is supported by three cables...Ch. 2.5 - A transmission tower is held by three guy wires...Ch. 2.5 - A transmission tower is held by three guy wires...Ch. 2.5 - In trying to move across a slippery icy surface, a...Ch. 2.5 - Fig. P2.113 2.114 Solve Prob. 2.113 assuming that...Ch. 2.5 - For the rectangular plate of Probs. 2.109 and...Ch. 2.5 - PROBLEM 2.116 For the cable system of Problems...Ch. 2.5 - PROBLEM 2.117 For the cable system of Problems...Ch. 2.5 - Prob. 2.118PCh. 2.5 - For the transmission tower of Probs. 2.111 and...Ch. 2.5 - Three wires are connected at point D, which is...Ch. 2.5 - A container of weight W is suspended from ring A,...Ch. 2.5 - Prob. 2.122PCh. 2.5 - Prob. 2.123PCh. 2.5 - Prob. 2.124PCh. 2.5 - Fig. P2.113 2.114 Solve Prob. 2.113 assuming that...Ch. 2.5 - Prob. 2.126PCh. 2 - Prob. 2.127RPCh. 2 - Prob. 2.128RPCh. 2 - A hoist trolley is subjected to the three forces...Ch. 2 - Knowing that = 55 and that boom AC exerts on pin...Ch. 2 - Two cables are tied together at C and loaded as...Ch. 2 - Two cables tied together at C are loaded as shown....Ch. 2 - The end of the coaxial cable AE is attached to the...Ch. 2 - Prob. 2.134RPCh. 2 - Find the magnitude and direction of the resultant...Ch. 2 - Prob. 2.136RPCh. 2 - Collars A and B are connected by a 25-in.-lang...Ch. 2 - Fig. P2.137 and P2.138 2.138 Collars A and B are...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q 2. Four ropes are attached to a crate and exert the forces shown. If the forces are to be replaced with a single equivalent force applied at a point on line AB, determine (a) the equivalent force and the dis- tance from A to the point of application of the force when a = 30°, (b) the value of a so that the single equivalent force is applied at point B. 160 Ib 100 lb 46 in. B 25 400 lb 36 in. 90 lb 65° D 10 in. C 66 in.arrow_forwardQ.2) If two forces are applied to a rigid body, which have the same magnitude (F) anc the same direction, the resultant force is: (a) 2F (b) F (c) 0 (d) - Farrow_forwardFor the hook support of Prob. 2.10, determine by trigonometry (a) the magnitude and direction of the smallest force P for which the resultant R of the two forces applied to the support is horizontal, (b) the corresponding magnitude of R.(Reference to Problem 2.10):Two forces are applied as shown to a hook support. Knowing that the magnitude of P is 35 N, determine by trigonometry (a) the required angle aif the resultant R of the two forces applied to the support is to be horizontal, (b) the corresponding magnitude of R.arrow_forward
- Three horizontal forces are applied as shown to a vertical cast-iron arm. Determine the resultant of the forces and the distance from the ground to its line of action when (a) P= 200 N, (b) P= 2400 N, (c) P = 1000 N.arrow_forwardA force of 150 N is applied to point A of the lever.Knowing that the distance AB = 225 mm, calculate themoment of force relative to point B when alpha=50 degrees.arrow_forwardThree forces are acting on a bolt, namely, F, G, and H. If G is 324 N and H is 405 N, determine the following:a. the magnitude and direction of the components of force G when resolved along the u- and w-axes. b. the magnitude and direction of the resultant, denoted as P, of forces G and H c. the magnitude and direction of the minimum force F that will be added to P so that the resultant, R, is along the v-axisd. corresponding R *Note that the direction of force F in the figure is just assumed.arrow_forward
- A steel tank is to be positioned in an excavation. Knowing that a =20°, determine (a) the required magnitude of the force P if the resultant R of the two forces applied at A is to be 600 with the horizontal (b) the corresponding magnitude of R. 150 N 30°arrow_forwardA force F with a magnitude of 100 N is applied at the origin o of the axes x-y-z as shown. The line of action of F passes through a point A whose coordinates are 3 m, 4 m, and 5 m. Determine (a) the x, y, and z scalar components of F, (b) the projection Fy of F on the x-y plane, and (c) the projection Fos of F along the line OB.arrow_forwardQ2: A force F with a magnitude of 100 N is applied at the origin O of the axes x-y-z as shown. The line of action of F passes through a point A whose coordinates are 3 m, 4 m, and 5 m. Determine (a) the x, y, and z scalar components of F, (b) the projection Fxy of F on the x-y plane, and (c) the projection FoB of F along the line OB. F = 100 N 4 m B 5 m 2 m 6 marrow_forward
- what is the magnitude and direction of the resultant in the x, y, and z directionsarrow_forwardPage 115 3.41 Ropes AB and BC are two of the ropes used to support a tent. The two ropes are attached to a stake at B. If the tension in rope AB is 540 N, determine (a) the angle between rope AB and the stake, (b) the projection on the stake of the force exerted by rope AB at point B. Fig. P3.41 and P3.42 3 m A 3 m Z B 1.5 m x D 0.38 m 0.08 m. B 0.16 m Detail of the stake at Barrow_forwardQ2 / Determine the magnitude of F1 and angle o If you know that the magnitude of the resultant force acting is 700N und its direction meusured clockwise from the positive X axis is 0 =30" 60 F: - 600 N Fs = 350N Fig. Q2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Engineering Basics - Statics & Forces in Equilibrium; Author: Solid Solutions - Professional Design Solutions;https://www.youtube.com/watch?v=dQBvQ2hJZFg;License: Standard YouTube License, CC-BY