
Concept explainers
Calculate the minimum difference in standard electrode potentials needed to lower the concentration of the metal M1 to 2.00 × 10-4 M ¡n a solution that is 1.00 × 10-1 M in the less-reducible metal M2 where (a) M2 is univalent and M1 is divalent. (b) M2 and M1 are both divalent, (c) M2 is trivalent and M1 is univalent, (d) M2is divalent and M1 is univalent, (e) M2 is divalent and M1 ¡s trivalent.

(a)
Interpretation:
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Concept introduction:
The electrode potential of the cell is defined as the potential of cell consisting of two electrodes. Therefore at anode the oxidation occurs and at cathode reduction occurs. The Nernst equation is used to determine the electromotive force and the reduction potential of the half life cell.
Answer to Problem 24.2QAP
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Explanation of Solution
Given information:
The concentration of the metal
Write the expression for the Nernst at room temperature.
Here, the half-life potential is
Write the expression for the minimum difference in the standard electrode potential.
Substitute
Here, the initial energy is
Substitute
Here, the final energy is
Write the expression for the relation between the initial energy and final energy.
Substitute
Substitute
The minimum difference in the standard electrode potential needed to lower the concentration of metal

(b)
Interpretation:
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Concept introduction:
The electrode potential of the cell is defined as the potential of cell consisting of two electrodes. Therefore at anode the oxidation occurs and at cathode reduction occurs. The Nernst equation is used to determine the electromotive force and the reduction potential of the half life cell.
Answer to Problem 24.2QAP
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Explanation of Solution
The concentration of the metal
Substitute
Here, the initial energy is
Substitute
Here, the final energy is
Substitute
Substitute
The minimum difference in the standard electrode potential needed to lower the concentration of metal

(c)
Interpretation:
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Concept introduction:
The electrode potential of the cell is defined as the potential of cell consisting of two electrodes. Therefore at anode the oxidation occurs and at cathode reduction occurs. The Nernst equation is used to determine the electromotive force and the reduction potential of the half life cell.
Answer to Problem 24.2QAP
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Explanation of Solution
The concentration of the metal
Substitute
Here, the initial energy is
Substitute
Here, the final energy is
Substitute
Substitute
The minimum difference in the standard electrode potential needed to lower the concentration of metal

(d)
Interpretation:
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Concept introduction:
The electrode potential of the cell is defined as the potential of cell consisting of two electrodes. Therefore at anode the oxidation occurs and at cathode reduction occurs. The Nernst equation is used to determine the electromotive force and the reduction potential of the half life cell.
Answer to Problem 24.2QAP
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Explanation of Solution
The concentration of the metal
Substitute
Here, the initial energy is
Substitute
Here, the final energy is
Substitute
Substitute
The minimum difference in the standard electrode potential needed to lower the concentration of metal

(e)
Interpretation:
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Concept introduction:
The electrode potential of the cell is defined as the potential of cell consisting of two electrodes. Therefore at anode the oxidation occurs and at cathode reduction occurs. The Nernst equation is used to determine the electromotive force and the reduction potential of the half life cell.
Answer to Problem 24.2QAP
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Explanation of Solution
The concentration of the metal
Substitute
Here, the initial energy is
Substitute
Here, the final energy is
Substitute
Substitute
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Want to see more full solutions like this?
Chapter 24 Solutions
Principles of Instrumental Analysis
- Experiment 27 hates & Mechanisms of Reations Method I visual Clock Reaction A. Concentration effects on reaction Rates Iodine Run [I] mol/L [S₂082] | Time mo/L (SCC) 0.04 54.7 Log 1/ Time Temp Log [ ] 13,20] (time) / [I] 199 20.06 23.0 30.04 0.04 0.04 80.0 22.8 45 40.02 0.04 79.0 21.6 50.08 0.03 51.0 22.4 60-080-02 95.0 23.4 7 0.08 0-01 1970 23.4 8 0.08 0.04 16.1 22.6arrow_forward(15 pts) Consider the molecule B2H6. Generate a molecular orbital diagram but this time using a different approach that draws on your knowledge and ability to put concepts together. First use VSEPR or some other method to make sure you know the ground state structure of the molecule. Next, generate an MO diagram for BH2. Sketch the highest occupied and lowest unoccupied MOs of the BH2 fragment. These are called frontier orbitals. Now use these frontier orbitals as your basis set for producing LGO's for B2H6. Since the BH2 frontier orbitals become the LGOS, you will have to think about what is in the middle of the molecule and treat its basis as well. Do you arrive at the same qualitative MO diagram as is discussed in the book? Sketch the new highest occupied and lowest unoccupied MOs for the molecule (B2H6).arrow_forwardQ8: Propose an efficient synthesis of cyclopentene from cyclopentane.arrow_forward
- Q7: Use compound A-D, design two different ways to synthesize E. Which way is preferred? Please explain. CH3I ONa NaOCH 3 A B C D E OCH3arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forward(10 pts) The density of metallic copper is 8.92 g cm³. The structure of this metal is cubic close-packed. What is the atomic radius of copper in copper metal?arrow_forward
- Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardPredict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2).arrow_forwardQ3: Rank the following compounds in increasing reactivity of E1 and E2 eliminations, respectively. Br ca. go do A CI CI B C CI Darrow_forward
- Q5: Predict major product(s) for the following reactions. Note the mechanism(s) of the reactions (SN1, E1, SN2 or E2). H₂O דיי "Br KN3 CH3CH2OH NaNH2 NH3 Page 3 of 6 Chem 0310 Organic Chemistry 1 HW Problem Sets CI Br excess NaOCH 3 CH3OH Br KOC(CH3)3 DuckDuckGarrow_forwardQ4: Circle the substrate that gives a single alkene product in a E2 elimination. CI CI Br Brarrow_forwardPlease calculate the chemical shift of each protonsarrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning





