![University Physics with Modern Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780321973610/9780321973610_largeCoverImage.gif)
University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 24, Problem 24.2E
The plates of a parallel-plate capacitor are 3.28 mm apart, and each has an area of 9.82 cm2. Each plate carries a charge of magnitude 4.35 × 10−8C. The plates are in vacuum. What is (a) the capacitance; (b) the potential difference between the plates; (c) the magnitude of the electric field between the plates?
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Learn your wayIncludes step-by-step video
![Blurred answer](/static/blurred-answer.jpg)
schedule03:15
Students have asked these similar questions
In the figures, the masses are hung from an elevator ceiling. Assume the velocity of the elevator is constant. Find the tensions in
the ropes (in N) for each case. Note that 0₁ = 35.0°, 0₂ = 55.0°, 03 = 60.0°, m₁ = 3.00 kg, and m2 = 7.00 kg. (Due to the
nature of this problem, do not use rounded intermediate values-including answers submitted in WebAssign-in your calculations.)
(a)
Τι
WY NY MY
T3
e₁
T₁
=
N
=
N
=
N
(b)
18
Τι
=
Τι
T3
=
|| || ||
=
T
T
Ts
m₂
N
N
N
02
T₂
T3
m₁
You are working with a movie director and investigating a scene with a cowboy sliding off a tree limb and falling onto the saddle of
a moving horse. The distance of the fall is several meters, and the calculation shows a high probability of injury to the cowboy
from the stunt. Let's look at a simpler situation. Suppose the director asks you to have the cowboy step off a platform 2.55 m off
the ground and land on his feet on the ground. The cowboy keeps his legs straight as he falls, but then bends at the knees as
soon as he touches the ground. This allows the center of mass of his body to move through a distance of 0.660 m before his body
comes to rest. (Center of mass will be formally defined in Linear Momentum and Collisions.) You assume this motion to be under
constant acceleration of the center of mass of his body. To assess the degree of danger to the cowboy in this stunt, you wish to
calculate the average force upward on his body from the ground, as a multiple of the cowboy's…
A box of mass m = 2.00 kg is released from rest at the top of an inclined plane as seen in the figure. The box starts out at height
h =0.200 m above the top of the table, the table height is H = 2.00 m, and 0 = 41.0°.
H
m
(a) What is the acceleration (in m/s²) of the box while it slides down the incline?
m/s²
(b) What is the speed (in m/s) of the box when it leaves the incline?
m/s
(c) At what horizontal distance (in m) from the end of the table will the box hit the ground?
m
(d) How long (in s) from when the box is released does it hit the ground?
S
(e) Does the box's mass affect any of your above answers?
Yes
No
Chapter 24 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 24.1 - A capacitor has vacuum in the space between the...Ch. 24.2 - You want to connect a 4-F capacitor and an 8-F...Ch. 24.3 - You want to connect a 4-F capacitor and an 8-F...Ch. 24.4 - The space between the plates of an isolated...Ch. 24.5 - A parallel-plate capacitor has charges Q and Q on...Ch. 24.6 - A single point charge q is embedded in a very...Ch. 24 - Equation (24.2) shows that the capacitance of a...Ch. 24 - Suppose several different parallel-plate...Ch. 24 - Suppose the two plates of a capacitor have...Ch. 24 - To store the maximum amount of energy in a...
Ch. 24 - In the parallel-plate capacitor of Fig. 24.2,...Ch. 24 - A parallel-plate capacitor is charged by being...Ch. 24 - A parallel-plate capacitor is charged by being...Ch. 24 - Two parallel-plate capacitors, identical except...Ch. 24 - The charged plates of a capacitor attract each...Ch. 24 - You have two capacitors and want to connect them...Ch. 24 - As shown in Table 24.1, water has a very large...Ch. 24 - Is dielectric strength the same thing as...Ch. 24 - A capacitor made of aluminum foil strips separated...Ch. 24 - Suppose you bring a slab of dielectric close to...Ch. 24 - The freshness of fish can be measured by placing a...Ch. 24 - Electrolytic capacitors use as their dielectric an...Ch. 24 - In terms of the dielectric constant K, what...Ch. 24 - A parallel-plate capacitor is connected to a power...Ch. 24 - Liquid dielectrics that have polar molecules (such...Ch. 24 - A conductor is an extreme case of a dielectric,...Ch. 24 - The two plates of a capacitor are given charges Q....Ch. 24 - The plates of a parallel-plate capacitor are 2.50...Ch. 24 - The plates of a parallel-plate capacitor are 3.28...Ch. 24 - A parallel-plate air capacitor of capacitance 245...Ch. 24 - Cathode-ray-tube oscilloscopes have parallel metal...Ch. 24 - A 10.0-F parallel-plate capacitor with circular...Ch. 24 - A 5.00-F parallel-plate capacitor is connected to...Ch. 24 - A parallel-plate air capacitor is to store charge...Ch. 24 - A 5.00-pF, parallel-plate, air-filled capacitor...Ch. 24 - A capacitor is made from two hollow, coaxial, iron...Ch. 24 - A cylindrical capacitor consists of a solid inner...Ch. 24 - A spherical capacitor contains a charge of 3.30 nC...Ch. 24 - A cylindrical capacitor has an inner conductor of...Ch. 24 - A spherical capacitor is formed from two...Ch. 24 - Figure E24.14 shows a system of four capacitors,...Ch. 24 - BIO Electric Eels. Electric eels and electric fish...Ch. 24 - For the system of capacitors shown in Fig. E24.16,...Ch. 24 - In Fig. E24.17, each capacitor has C = 4.00 F and...Ch. 24 - In Fig. 24.8a, let C1 = 3.00 F, C2 = 5.00F, and...Ch. 24 - In Fig. 24.9a, let C1 = 3.00 F, C2 = 5.00 F, and...Ch. 24 - In Fig. E24.20, C1 = 6.00 F, C2 = 3 00 F, and C3 =...Ch. 24 - For the system of capacitors shown in Fig. E24.21,...Ch. 24 - Suppose the 3-F capacitor in Fig. 24.10a were...Ch. 24 - 5.80-F, parallel-plate, air capacitor has a plate...Ch. 24 - A parallel-plate air capacitor has a capacitance...Ch. 24 - An air capacitor is made from two flat parallel...Ch. 24 - A parallel-plate vacuum capacitor has 8.38 J of...Ch. 24 - You have two identical capacitors and an external...Ch. 24 - For the capacitor net-work shown in Fig. E24.28,...Ch. 24 - For the capacitor net-work shown in Fig. E24.29,...Ch. 24 - A 0.350-m-long cylindrical capacitor consists of a...Ch. 24 - A cylindrical air capacitor of length 15.0 m...Ch. 24 - A capacitor is formed from two concentric...Ch. 24 - A 12.5-F capacitor is connected to a power supply...Ch. 24 - A parallel-plate capacitor has capacitance C0 =...Ch. 24 - Two parallel plates have equal and opposite...Ch. 24 - A budding electronics hobbyist wants to make a...Ch. 24 - The dielectric to be used in a parallel-plate...Ch. 24 - BIO Potential in Human Cells. Some cell walls in...Ch. 24 - A constant potential difference of 12 v is...Ch. 24 - Polystyrene has dielectric constant 2.6 and...Ch. 24 - When a 360-nF air capacitor (1 nF = 109F) is...Ch. 24 - A parallel-plate capacitor has capacitance C =...Ch. 24 - A parallel-plate capacitor has the volume between...Ch. 24 - A parallel-plate capacitor has plates with area...Ch. 24 - Electronic flash units for cameras contain a...Ch. 24 - A parallel-plate air capacitor is made by using...Ch. 24 - In one type of computer keyboard, each key holds a...Ch. 24 - BIO Cell Membranes. Cell membranes (the walled...Ch. 24 - A 20.0-F capacitor is charged to a potential...Ch. 24 - In Fig. 24.9a, let C1 = 9.0 F, C2 = 4.0 F, and Vab...Ch. 24 - For the capacitor network shown in Fig. P24.51,...Ch. 24 - In Fig. E24.17, C1 = 6.00 F, C2 = 3.00 F, C3 =...Ch. 24 - In Fig. P24.53, C1 = C5 = 8.4 F and C2 = C3 = C4 =...Ch. 24 - Current materials-science technology allows...Ch. 24 - In Fig. E24.20, C1 = 3.00 F and Vab = 150 V. The...Ch. 24 - The capacitors in Fig. P24.56 are initially...Ch. 24 - Three capacitors having capacitances of 8.4, 8.4,...Ch. 24 - Capacitance of a Thundercloud. The charge center...Ch. 24 - In Fig. P24.59, each capacitance C1 is 6.9 F, and...Ch. 24 - Each combination of capacitors between points a...Ch. 24 - A parallel-plate capacitor with only air between...Ch. 24 - An air capacitor is made by using two flat plates,...Ch. 24 - A potential difference Vab = 48.0 V is applied...Ch. 24 - CALC The inner cylinder of a long, cylindrical...Ch. 24 - A parallel-plate capacitor has square plates that...Ch. 24 - A parallel-plate capacitor is made from two plates...Ch. 24 - Three square metal plates A, B, and C, each 12.0...Ch. 24 - A fuel gauge uses a capacitor to determine the...Ch. 24 - DATA Your electronics company has several...Ch. 24 - DATA You are designing capacitors for various...Ch. 24 - DATA You are conducting experiments with an...Ch. 24 - Two square conducting plates with sides of length...Ch. 24 - BIO THE ELECTRIC EGG. Upon fertilization, the eggs...Ch. 24 - Suppose that the egg has a diameter of 200 m. What...Ch. 24 - Suppose that the change in Vm was caused by the...Ch. 24 - What is the minimum amount of work that must be...
Additional Science Textbook Solutions
Find more solutions based on key concepts
A mixed culture of Escherichia coli and Penicillium chrysogenum is inoculated onto the following culture media....
Microbiology: An Introduction
53. This reaction was monitored as a function of time:
A plot of In[A] versus time yields a straight ...
Chemistry: Structure and Properties (2nd Edition)
In tomato plants, purple leaf color is controlled by a dominant allele A, and green leaf by a recessive allele ...
Genetic Analysis: An Integrated Approach (3rd Edition)
DRAW IT The diagram shows a cell in meiosis. (a) Label the appropriate structures with these terms: chromosome ...
Campbell Biology (11th Edition)
Use the following graph to answer questions 3 and 4. 3. Which of the lines best depicts the log phase of a ther...
Microbiology: An Introduction
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) A sphere made of rubber has a density of 0.940 g/cm³ and a radius of 7.00 cm. It falls through air of density 1.20 kg/m³ and has a drag coefficient of 0.500. What is its terminal speed (in m/s)? m/s (b) From what height (in m) would the sphere have to be dropped to reach this speed if it fell without air resistance? marrow_forwardThe systems shown below are in equilibrium. If the spring scales are calibrated in newtons, what do they read? Ignore the masses of the pulleys and strings and assume the pulleys and the incline are frictionless. (Let m = 2.19 kg and € = 29.0°.) scale in (a) N N scale in (b) scale in (c) N scale in (d) N a C m m m m m b d m Ꮎarrow_forwardAn elevator car has two equal masses attached to the ceiling as shown. (Assume m = 3.10 kg.) m m T₁ T2 (a) The elevator ascends with an acceleration of magnitude 2.00 m/s². What are the tensions in the two strings? (Enter your answers in N.) = N T₁ Τι = N (b) The maximum tension the strings can withstand is 78.8 N. What is the maximum acceleration of the elevator so that a string does not break? (Enter the magnitude in m/s².) m/s²arrow_forward
- (a) At what speed (in m/s) will a proton move in a circular path of the same radius as an electron that travels at 7.85 x 100 m/s perpendicular to the Earth's magnetic field at an altitude where the field strength is 1.20 x 10-5 T? 4.27e3 m/s (b) What would the radius (in m) of the path be if the proton had the same speed as the electron? 7.85e6 x m (c) What would the radius (in m) be if the proton had the same kinetic energy as the electron? 195.38 x m (d) What would the radius (in m) be if the proton had the same momentum as the electron? 3.7205 marrow_forward! Required information The block shown is made of a magnesium alloy, for which E = 45 GPa and v = 0.35. Know that σx = -185 MPa. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. 25 mm B D 40 mm 100 mm Determine the magnitude of Oy for which the change in the height of the block will be zero. The magnitude of Oy is MPa.arrow_forwardThe rigid bar ABC is supported by two links, AD and BE, of uniform 37.5 × 6-mm rectangular cross section and made of a mild steel that is assumed to be elastoplastic with E = 200 GPa and σy= 250 MPa. The magnitude of the force Q applied at B is gradually increased from zero to 265 kN and a = 0.640 m. 1.7 m 1 m D A B 2.64 m E Determine the value of the normal stress in each link. The value of the normal stress in link AD is The value of the normal stress in link BE is 250 MPa. MPa.arrow_forward
- Two tempered-steel bars, each 16 in. thick, are bonded to a ½ -in. mild-steel bar. This composite bar is subjected as shown to a centric axial load of magnitude P. Both steels are elastoplastic with E= 29 × 106 psi and with yield strengths equal to 100 ksi and 50 ksi, respectively, for the tempered and mild steel. The load P is gradually increased from zero until the deformation of the bar reaches a maximum value dm = 0.04 in. and then decreased back to zero. Take L = 15 in. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. 2.0 in. in. 3 in. 3 16 in. Determine the maximum stress in the tempered-steel bars. The maximum stress in the tempered-steel bars is ksi.arrow_forwardAmmonia enters the compressor of an industrial refrigeration plant at 2 bar, -10°C with a mass flow rate of 15 kg/min and is compressed to 12 bar, 140°C. Heat transfer from the compressor to its surroundings occurs at a rate of 6 kW. For steady-state operation, calculate, (a) the power input to the compressor, in kW, Answer (b) the entropy production rate, in kW/K, for a control volume encompassing the compressor and its immediate surroundings such that heat transfer occurs at 300 K.arrow_forwardNo chatgpt pls will upvotearrow_forward
- Shown to the right is a block of mass m=5.71kgm=5.71kg on a ramp that makes an angle θ=24.1∘θ=24.1∘ with the horizontal. This block is being pushed by a horizontal force, F=229NF=229N. The coefficient of kinetic friction between the two surfaces is μ=0.51μ=0.51. Enter an expression for the acceleration of the block up the ramp using variables from the problem statement together with gg for the acceleration due to gravity. a=arrow_forwardIf the density and atomic mass of copper are respectively 8.80 x 103 kg/m³ and 63.5 kg/kmol (note that 1 kmol = 1,000 mol), and copper has one free electron per copper atom, determine the following. (a) the drift speed of the electrons in a 10 gauge copper wire (2.588 mm in diameter) carrying a 13.5 A current 1.988-4 See if you can obtain an expression for the drift speed of electrons in a copper wire in terms of the current in the wire, the diameter of the wire, the molecular weight and mass density of copper, Avogadro's number, and the charge on an electron. m/s (b) the Hall voltage if a 2.68 T field is applied perpendicular to the wire 3.34e-6 x Can you start with basic equations for the electric and magnetic forces acting on the electrons moving through the wire and obtain a relationship between the magnitude of the electric and magnetic field and the drift speed of the electrons? How is the magnitude of the electric field related to the Hall voltage and the diameter of the wire? Varrow_forward(a) At what speed (in m/s) will a proton move in a circular path of the same radius as an electron that travels at 7.85 x 100 m/s perpendicular to the Earth's magnetic field at an altitude where the field strength is 1.20 x 10-5 T? 4.27e3 m/s (b) What would the radius (in m) of the path be if the proton had the same speed as the electron? 0.685 x m (c) What would the radius (in m) be if the proton had the same kinetic energy as the electron? 0.0084 m (d) What would the radius (in m) be if the proton had the same momentum as the electron? 0.0303 x marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168161/9781938168161_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285737027/9781285737027_smallCoverImage.gif)
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics Capacitor & Capacitance part 7 (Parallel Plate capacitor) CBSE class 12; Author: LearnoHub - Class 11, 12;https://www.youtube.com/watch?v=JoW6UstbZ7Y;License: Standard YouTube License, CC-BY