Physics for Scientists and Engineers, Technology Update (No access codes included)
9th Edition
ISBN: 9781305116399
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 24, Problem 24.18P
Find the net electric flux through (a) the closed spherical surface in a uniform electric field shown in Figure P23.22a and (b) the closed cylindrical surface shown in Figure P23.22b. (c) What can you conclude about the charges, if any, inside the cylindrical surface?
Figure P23.22
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Assume the magnitude of the electric field on each face of the cube of edge L = 1.00 m in Figure P23.32 is uniform and the directions of the fields on each face are as indicated. Find (a) the net electric flux through the cube and (b) the net charge inside the cube. (c) Could the net charge he a single point charge?
The electric field everywhere on the surface of a thin, spherical shell of radius 0.730 m is of magnitude 916 N/C and points radially toward the center of the sphere.
(a) What is the net charge within the sphere's surface?
nC
(b) What is the distribution of the charge inside the spherical shell?
O The positive charge has a spherically symmetric charge distribution.
O The negative charge has an asymmetric charge distribution.
O The positive charge has an asymmetric charge distribution.
The negative charge has a spherically symmetric charge distribution.
The electric field everywhere on the surface of a thin, spherical shell of radius 0.800 m is of magnitude 892 N/C and points radially toward the center of the sphere.
(a) What is the net charge within the sphere's surface?
nC
(b) What is the distribution of the charge inside the spherical shell?
O The negative charge has a spherically symmetric charge distribution.
O The positive charge has an asymmetric charge distribution.
O The positive charge has a spherically symmetric charge distribution.
O The negative charge has an asymmetric charge distribution.
Chapter 24 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
Ch. 24 - Suppose a point charge is located at the center of...Ch. 24 - If the net flux through a gaussian surface is...Ch. 24 - A cubical gaussian surface surrounds a long,...Ch. 24 - A coaxial cable consists of a long, straight...Ch. 24 - In which of the following contexts ran Gausss law...Ch. 24 - A particle with charge q is located inside a...Ch. 24 - Charges of 3.00 nC, -2.00 nC, -7.00 nC, and 1.00...Ch. 24 - A large, metallic, spherical shell has no net...Ch. 24 - Two solid spheres, both of radius 5 cm. carry...Ch. 24 - A uniform electric field of 1.00 N/C is set up by...
Ch. 24 - A solid insulating sphere of radius 5 cm carries...Ch. 24 - A cubical gaussian surface is bisected by a large...Ch. 24 - Rank the electric fluxes through each gaussian...Ch. 24 - Consider an electric field that is uniform in...Ch. 24 - A cubical surface surrounds a point charge q...Ch. 24 - A uniform electric field exists in a region of...Ch. 24 - If the total charge inside a closed surface is...Ch. 24 - Explain why the electric flux through a closed...Ch. 24 - If more electric field lines leave a gaussian...Ch. 24 - A person is placed in a large, hollow, metallic...Ch. 24 - Consider two identical conducting spheres whose...Ch. 24 - A common demonstration involves charging a rubber...Ch. 24 - On the basis of the repulsive nature of the force...Ch. 24 - The Sun is lower in the sky during the winter than...Ch. 24 - A flat surface of area 3.20 m2 is rotated in a...Ch. 24 - A vertical electric field of magnitude 2.00 104...Ch. 24 - A 40.0-cm-diameter circular loop is rotated in a...Ch. 24 - Consider a closed triangular box resting within a...Ch. 24 - An electric field of magnitude 3.50 kN/C is...Ch. 24 - A nonuniform electric field is given by the...Ch. 24 - An uncharged, nonconducting, hollow sphere of...Ch. 24 - Find the net electric flux through the spherical...Ch. 24 - The following charges are located inside a...Ch. 24 - The electric field everywhere on the surface of a...Ch. 24 - Four closed surfaces, S1 through S4 together with...Ch. 24 - A charge of 170 C is at the center of a cube of...Ch. 24 - In the air over a particular region at an altitude...Ch. 24 - A particle with charge of 12.0 C is placed at the...Ch. 24 - (a) Find the net electric flux through the cube...Ch. 24 - (a) A panicle with charge q is located a distance...Ch. 24 - An infinitely long line charge having a uniform...Ch. 24 - Find the net electric flux through (a) the closed...Ch. 24 - A particle with charge Q = 5.00 C is located at...Ch. 24 - A particle with charge Q is located at the center...Ch. 24 - A particle with charge Q is located a small...Ch. 24 - Figure P23.23 represents the top view of a cubic...Ch. 24 - In nuclear fission, a nucleus of uranium-238,...Ch. 24 - The charge per unit length on a long, straight...Ch. 24 - A 10.0-g piece of Styrofoam carries a net charge...Ch. 24 - Determine the magnitude of the electric field at...Ch. 24 - A large, flat, horizontal sheet of charge has a...Ch. 24 - Suppose you fill two rubber balloons with air,...Ch. 24 - Consider a thin, spherical shell of radius 14.0 cm...Ch. 24 - A nonconducting wall carries charge with a uniform...Ch. 24 - A uniformly charged, straight filament 7.00 m in...Ch. 24 - Assume the magnitude of the electric field on each...Ch. 24 - Consider a long, cylindrical charge distribution...Ch. 24 - A cylindrical shell of radius 7.00 cm and length...Ch. 24 - A solid sphere of radius 40.0 cm has a total...Ch. 24 - Review. A particle with a charge of 60.0 nC is...Ch. 24 - A long, straight metal rod has a radius of 5.00 cm...Ch. 24 - Why is the following situation impossible? A solid...Ch. 24 - A solid metallic sphere of radius a carries total...Ch. 24 - A positively charged panicle is at a distance R/2...Ch. 24 - A very large, thin, flat plate of aluminum of area...Ch. 24 - In a certain region of space, the electric field...Ch. 24 - Two identical conducting spheres each having a...Ch. 24 - A square plate of copper with 50.0-cm sides has no...Ch. 24 - A long, straight wire is surrounded by a hollow...Ch. 24 - A thin, square, conducting plate 50.0 cm on a side...Ch. 24 - A solid conducting sphere of radius 2.00 cm has a...Ch. 24 - Consider a plane surface in a uniform electric...Ch. 24 - Find the electric flux through the plane surface...Ch. 24 - A hollow, metallic, spherical shell has exterior...Ch. 24 - A sphere of radius R = 1.00 m surrounds a particle...Ch. 24 - A sphere of radius R surrounds a particle with...Ch. 24 - A very large conducting plate lying in the xy...Ch. 24 - A solid, insulating sphere of radius a has a...Ch. 24 - A solid insulating sphere of radius a = 5.00 cm...Ch. 24 - Two infinite, nonconducting sheets of charge are...Ch. 24 - For the configuration shown in Figure P24.45,...Ch. 24 - An insulating solid sphere of radius a has a...Ch. 24 - A uniformly charged spherical shell with positive...Ch. 24 - An insulating solid sphere of radius a has a...Ch. 24 - A slab of insulating material has a nonuniform...Ch. 24 - Prob. 24.62CPCh. 24 - A dosed surface with dimensions a = b= 0.400 111...Ch. 24 - A sphere of radius 2a is made of a nonconducting...Ch. 24 - A spherically symmetric charge distribution has a...Ch. 24 - A solid insulating sphere of radius R has a...Ch. 24 - An infinitely long insulating cylinder of radius R...Ch. 24 - A particle with charge Q is located on the axis of...Ch. 24 - Review. A slab of insulating material (infinite in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Assume a uniformly charged ring of radius R and charge Q produces an electric field Ering at a point P on its axis, at distance x away from the center of the ring as in Figure OQ23.13a. Now the same charge Q is spread uniformly over the circular area the ring encloses, forming a flat disk of charge with the same radius as in Figure OQ23.13b.How does the field Edisk produced by the disk at P compare with the field produced by the ring at the same point?(a) Edisk < Ering (b) Edisk = Ering (c) Edisk > Ering (d) impossible to determinearrow_forwardA thin rod of length ℓ and uniform charge per unit length λ lies along the x axis, as shown in Figure P23.35. Show that the electric field at P, a distance y from the rod along its perpendicular bisector, has no x component and is given by E = 2ke λ sin θ0/y.arrow_forward35. M A uniformly charged insulating rod of length 14.0 cm is bent into the shape of a semicircle as shown in Figure P23.35. The rod has a total charge of –7.50 µC. Find (a) the magnitude and (b) the direc- tion of the electric field at 0, the center of the semicircle.arrow_forward
- The electric field everywhere on the surface of a thin, spherical shell of radius 0.745 m is of magnitude 915 N/C and points radially toward the center of the sphere. (a) What is the net charge within the sphere's surface? nC (b) What is the distribution of the charge inside the spherical shell? O The negative charge has a spherically symmetric charge distribution. O The positive charge has a spherically symmetric charge distribution. O The positive charge has an asymmetric charge distribution. O The negative charge has an asymmetric charge distribution.arrow_forwardThe electric field on the axis of a uniformly charged ring has magnitude 400 kN/C at a point 6 cm from the ring center. The magnitude 15 cm from the center is 125 kN/C; in both cases the field points away from the ring. a. Find the rings radius b. find the rings chargearrow_forwardA particle with charge Q is located on the axis of a circle of radius R at a distance b from the plane of the circle (as shown). Show that if one-fourth of the electric flux from the charge passes through the circle, then R = √(3b).arrow_forward
- A slab of insulating material has a nonuniform positive charge density ρ = Cx2, where x is measured from the center of the slab as shown and C is a constant. The slab is infinite in the y and z directions. Derive expressions for the electric field in (a) the exterior regions (|x| > d/2) and (b) the interior region of the slab (-d/2 < x < d/2).arrow_forwardy A total charge Q = 1.9 µC is distributed uniformly over a quarter circle arc of radius a = 8.6 cm as shown. a- T X a 1) What is A the linear charge density along the arc? C/m Submit 2) What is Ex, the value of the x-component of the electric field at the origin (x,y) = (0,0) ? N/C Submit 3) What is Ey, the value of the y-component of the electric field at the origin (x,y) = (0,0) ? N/C Submitarrow_forwardA solid, insulating sphere of radius a has a uniform charge density throughout its volume and a total charge Q. Concentric with this sphere is an uncharged, conducting, hollow sphere whose inner and outer radii are b and c as shown in Figure E23.1. We wish to understand completely the charges and electric fields at all locations. (a) Find the charge contained within a sphere of radius r < a. (b) From this value, find the magnitude of the electric field for r < a. (c) What charge is contained within a sphere of radius r when a < r < b? (d) From this value, find the magnitude of the electric field for r when a < r < b. (e) Now consider r when b < r< c. What is the magnitude of the electric field for this range of values of r? (f) From this value, what must be the charge on the inner surface of the hollow sphere? (g) From part (f), what must be the charge on the outer surface of the hollow sphere? (h) Consider the three spherical surfaces of radii a, b, and c.…arrow_forward
- A long, thin straight wire with linear charge density λ runs down the center of a thin, hollow metal cylinder of radius R. The cylinder has a net linear charge density 2λ. Assume λ is positive. a. Find expressions for the magnitude of the electric field strength inside the cylinder, r<R. Give your answer as a multiple of λ/ε0. Express your answer in terms of some or all of the variables R, r, and the constant π. b. Find expressions for the magnitude of the electric field strength outside the cylinder, r>R. Give your answer as a multiple of λ/ε0. Express your answer in terms of some or all of the variables R, r, and the constant π.arrow_forwardP. Consider a solid conducting sphere of ra- dius R and total charge Q. Which diagram describes the E(r) vs r (electric field vs radial distance) function for the sphere? L. G. part 1 of 2 M. 0 R 0 R radius. الالالا R 0 R part 2 of 2 Which diagram describes the E(r) vs r (electric field vs radial distance) function if the sphere is non-conducting and it is uni- formly charged, throughout its volume? 1. S 2. L 3. G 4. P 5. M 1. M 2. P 3. S 4. Garrow_forwardA hollow non-conducting spherical shell has inner radius R1 = 9 cm and outer radius R2 = 18 cm. A charge Q = -45 nC lies at the center of the shell. The shell carries a spherically symmetric charge density ρ = Ar for R1 < r < R2 that increases linearly with radius, where A = 19 μC/m4. a. What is the radial electric field at the point r = 0.5R1? Give the answer in units of kN/C, and take the positive direction outwards. b. What is the radial electric field at the point r = 0.5(R1+R2)? Give your answer in units of kN/C. c. What is the radial electric field at the point r = 2R2? Give your answer in units of kN/C. a.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY