The terms electrostatic force and electrostatic field may sound alike. To help keep them straight, identify and write down the standard symbol and SI units for each one. Which one requires a source and a subject? Which requires only a source?
SI units for both electric force and field and which of them requires a source and a subject, and requires only source.
Answer to Problem 1PQ
The SI units for electric force and field are N and
Explanation of Solution
The SI units of the electric force is N (Newton) and for the electric field is N/C (Newton per Coulomb).
The electric force requires both the source and subject whereas; electric field requires only a source.
Conclusion:
Therefore, the SI units of the electric force and field are N and
Want to see more full solutions like this?
Chapter 24 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- (a) Find the magnitude and direction of the electric field at the position of the 2.00 C charge in Figure P13.13. (b) How would the electric field at that point be affected if the charge there were doubled? Would the magnitude of the electric force be affected?arrow_forwardAn electron with a speed of 3.00 106 m/s moves into a uniform electric field of magnitude 1.00 103 N/C. The field lines are parallel to the electrons velocity and pointing in the same direction as the velocity. How far does the electron travel before it is brought to rest? (a) 2.56 cm (b) 5.12 cm (c) 11.2 cm (d) 3.34 m (e) 4.24 marrow_forwardReview. Two insulating spheres have radii 0.300 cm and 0.500 cm, masses 0.100 kg and 0.700 kg, and uniformly distributed charges 2.00 C and 3.00 C. They are released from rest when their centers are separated by 1.00 m. (a) How fast will each be moving when they collide? (b) What If? If the spheres were conductors, would the speeds be greater or less than those calculated in part (a)? Explain.arrow_forward
- (a) What is the direction and magnitude of an electric field that supports the weight of a free election near the surface of Earth? (b) Discuss what the small value for this field implies regarding the relative strength of the gravitational and electrostatic forces.arrow_forward(a) Find the direction and magnitude of an electric field that exerts a 4.801017 N westward force on an electron (b) What magnitude and direction force does this field exert on a proton?arrow_forwardA simple and common technique for accelerating electrons is shown in Figure 18.55, where there is a uniform electric field between two plates. Electrons are released, usually from a hot filament, near the negative plate, and there is a small hole in the positive plate that allows the electrons to continue moving. (a) Calculate the acceleration of the electorn if the field strength is 2.50104 N/C. (b) Explain why the electron will not be pulled back to the positive plate once it moves through the hole.arrow_forward
- Lightning can be studied with a Van de Graaff generator, which consists of a spherical dome on which charge is continuously deposited by a moving belt. Charge can be added until the electric field at the surface of the dome becomes equal to the dielectric strength of air. Any more charge leaks off in sparks as shown in Figure P25.52. Assume the dome has a diameter of 30.0 cm and is surrounded by dry air with a "breakdown" electric field of 3.00 106 V/m. (a) What is the maximum potential of the dome? (b) What is the maximum charge on the dome?arrow_forwardReview. Two insulating spheres have radii r1 and r2, masses m1 and m2, and uniformly distributed charges q1 and q2. They are released from rest when their centers are separated by a distance d. (a) How fast is each moving when they collide? (b) What If? It the spheres were conductors, would their speeds be greater or less than those calculated in part (a)? Explain.arrow_forwardA proton and an alpha particle (charge = 2e, mass = 6.64 1027 kg) are initially at rest, separated by 4.00 1015 m. (a) If they are both released simultaneously, explain why you cant find their velocities at infinity using only conservation of energy. (b) What other conservation law can be applied in this case? (c) Find the speeds of the proton and alpha particle, respectively, at infinity.arrow_forward
- This afternoon, you have a physics symposium class, and you are the presenter. You will be presenting a topic to physics majors and faculty. You have been so busy that you have not had time to prepare and you dont even have an idea for a topic. You are frantically reading your physics textbook looking for an idea. In your reading, you have learned that the Earth carries a charge on its surface of about 105 C, which results in electric fields in the atmosphere. This gets you very excited about a new theory. Suppose the Moon also carries a charge on the order of 105 C, with the opposite sign! Maybe the orbit of the Moon around the Earth is due to electrical attraction between the Moon and the Earth! Theres an idea for your symposium presentation! You quickly jot down a few notes and run off to your symposium. While you are speaking, you notice one of the professors doing some calculations on a scrap of paper. Uh-oh! He has just raised his hand with a question. Why are you embarrassed?arrow_forwardA 1.75-nC charged particle located at the origin is separated by a distance of 0.0825 m from a 2.88-nC charged particle located farther along the positive x axis. Both particles are held at their locations by an external agent. a. What is the electrostatic force on the 2.88-nC particle? b. What is the electrostatic force on the 1.75-nC particle?arrow_forwardAn electroscope is a device used to measure the (relative) charge on an object (Fig. P23.20). The electroscope consists of two metal rods held in an insulated stand. The bent rod is fixed, and the straight rod is attached to the bent rod by a pivot. The straight rod is free to rotate. When a positively charged object is brought close to the electroscope, the straight movable rod rotates. Explain your answers to these questions: a. Why does the rod rotate in Figure P23.20? b. If the positively charged object is removed, what happens to the electroscope? c. If a negatively charged object replaces the positively charged object in Figure P23.20, what happens to the electroscope? d. If a charged object touches the top of the fixed conducting rod and is then removed, what happens to the electroscope?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning