
(a)
Interpretation:
The balanced equation for the oxidation to CO2 and water of myristic acid should be written.
Concept Introduction:
The pathway of ß oxidation of saturated fatty acids involves repetitive four steps. The first three steps are to create a carbonyl group on ß carbon by oxidizing the bond between a and ß carbon. The resulted olefin is subsequently subjected to hydration and oxidation. In the fourth step ß keto ester is cleaved in a reverse Claisen condensation reaction, leaving an acetate unit and a fatty acid chain that lacks two carbons than it had. This shorter fatty acid chain can again participate in another ß oxidation cycle. The acetyl CoA produced is further

Explanation of Solution
Myristic acid is a saturated fatty acid. First myristic acid is converted into a CoA derivative before the ß oxidation.
Then after six circles of ß oxidation myristoyl CoA is converted into 7 acetyl CoA units.
Then the acetyl CoA produced enter into TCA cycle
Above reaction is achieved by GDP phosphorylation. It is equivalent to
NAD+ is recycled in electron transport chain
Above reaction supports the production of
FAD is recycled by
Above reaction supports the production of
AMP produced is phosphorylated to ADP using ATP and PPi is hydrolyzed.
Therefore the overall equation will be
(b)
Interpretation The balanced equation for the oxidation to CO2 and water of stearic acid should be written.
Concept Introduction:
The pathway of ß oxidation of saturated fatty acids involves repetitive four steps. The first three steps are to create a carbonyl group on ß carbon by oxidizing the bond between a and ß carbon. The resulted olefin is subsequently subjected to hydration and oxidation. In the fourth step ß keto ester is cleaved in a reverse Claisen condensation reaction, leaving an acetate unit and a fatty acid chain that lacks two carbons than it had. This shorter fatty acid chain can again participate in another ß oxidation cycle. The acetyl CoA produced is further metabolized in TCA cycle and amino acid biosynthesis.

Explanation of Solution
Stearic acid is a saturated fatty acid. First stearic acid is converted into a CoA derivative before the ß oxidation.
Then after eight circles of ß oxidation stearoyl CoA is converted into 9 acetyl CoA units.
Then the acetyl CoA produced enter into TCA cycle
Above reaction is achieved by GDP phosphorylation. It is equivalent to
NAD+ is recycled in electron transport chain
Above reaction supports the production of
FAD is recycled by
Above reaction supports the production of
AMP produced is phosphorylated to ADP using ATP and PPi is hydrolyzed.
Therefore the overall equation will be
(c)
Interpretation:
The balanced equation for the oxidation to CO2 and water of a-linolenic acid should be written.
Concept Introduction:
Unsaturated fatty acids are also subjected to ß oxidation. But for this two additional enzymes; an isomerase and a reductase are essential to manipulate cis double bonds of fatty acid. As the first steps for monounsaturated fatty acids like oleic acid which is a 18 carbon fatty acid with one double bond at 9,10 position., it normally undergoes the ß oxidation leaving 3 acetyl CoA and the cis-cis-Δ3-dodecenoyl-CoA product. This intermediate is not a substrate for acyl CoA dehydrogenase. This intermediate is then subjected to enoyl-CoA isomerase enzyme activity which rearranges the cis-Δ3 double bond to a trans-Δ2 double bond. This intermediate with trans-Δ2 double bond is preceded via normal ß oxidation.
But for poly unsaturated fatty acids like linoleic acid, ß oxidation occurs through three cycles and the enoyl CoA product is subjected to enoyl-CoA isomerase permitting another round of ß oxidation. The resulting cis-Δ4 enoyl CoA is converted normally to trans-Δ2, cis-Δ4 species by acyl CoA dehydrogenase. This product is not a substrate for enoyl CoA hydratase. In mammals 2,4-dienoyl CoA reductase produces a trans-Δ3 enoyl product which is then converted to the trans-Δ2 CoA by an enoyl CoA isomerase. This product then can normally participate in the ß oxidation.

Explanation of Solution
a linolenic acid is a polyunsaturated C-18 fatty acid with three double bonds at C-9, C-12 and C-15 positions. Eight rounds of ß oxidation will produce 9 molecules of acetyl CoA, without the reduction of FAD into FADH2 in two steps. Therefore two fewer molecules of FADH2 will enter into electron transport chain than in the case of stearic acid and 1 fewer molecule of O2 will be consumed. Therefore amount of ATP is reduced by 3, because
Therefore the overall equation will be
(d)
Interpretation:
The balanced equation for the oxidation to CO2 and water of a-linolenic acid should be written.
Concept Introduction:
Unsaturated fatty acids are also subjected to ß oxidation. But for this two additional enzymes; an isomerase and a reductase are essential to manipulate cis double bonds of fatty acid. As the first steps for monounsaturated fatty acids like oleic acid which is a 18 carbon fatty acid with one double bond at 9,10 position., it normally undergoes the ß oxidation leaving 3 acetyl CoA and the cis-cis-Δ3-dodecenoyl-CoA product. This intermediate is not a substrate for acyl CoA dehydrogenase. This intermediate is then subjected to enoyl-CoA isomerase enzyme activity which rearranges the cis-Δ3 double bond to a trans-Δ2 double bond. This intermediate with trans-Δ2 double bond is preceded via normal ß oxidation.
But for poly unsaturated fatty acids like linoleic acid, ß oxidation occurs through three cycles and the enoyl CoA product is subjected to enoyl-CoA isomerase permitting another round of ß oxidation. The resulting cis-Δ4 enoyl CoA is converted normally to trans-Δ2, cis-Δ4 species by acyl CoA dehydrogenase. This product is not a substrate for enoyl CoA hydratase. In mammals 2,4-dienoyl CoA reductase produces a trans-Δ3 enoyl product which is then converted to the trans-Δ2 CoA by an enoyl CoA isomerase. This product then can normally participate in the ß oxidation.

Explanation of Solution
Arachidonic acid is a polyunsaturated C-20 fatty acid with four double bonds at C-5, C-8, C-11 and C-14 positions. 9 rounds of ß oxidation will produce 10 molecules of acetyl CoA, without the reduction of FAD into FADH2 in two steps. Therefore two fewer molecules of FADH2 will enter into electron transport chain than in the case of stearic acid. Furthermore two NADH molecules will be consumed to resolve two conjugated double bonds.
Therefore the overall equation will be
Want to see more full solutions like this?
Chapter 23 Solutions
EBK BIOCHEMISTRY
- Sodium fluoroacetate (FCH 2CO2Na) is a very toxic molecule that is used as rodentpoison. It is converted enzymatically to fluoroacetyl-CoA and is utilized by citratesynthase to generate (2R,3S)-fluorocitrate. The release of this product is a potentinhibitor of the next enzyme in the TCA cycle. Show the mechanism for theproduction of fluorocitrate and explain how this molecule acts as a competitiveinhibitor. Predict the effect on the concentrations of TCA intermediates.arrow_forwardIndicate for the reactions below which type of enzyme and cofactor(s) (if any) wouldbe required to catalyze each reaction shown. 1) Fru-6-P + Ery-4-P <--> GAP + Sed-7-P2) Fru-6-P + Pi <--> Fru-1,6-BP + H2O3) GTP + ADP <--> GDP + ATP4) Sed-7-P + GAP <--> Rib-5-P + Xyl-5-P5) Oxaloacetate + GTP ---> PEP + GDP + CO 26) DHAP + Ery-4-P <--> Sed-1,7-BP + H 2O7) Pyruvate + ATP + HCO3- ---> Oxaloacetate + ADP + Piarrow_forwardTPP is also utilized in transketolase reactions in the PPP. Give a mechanism for theTPP-dependent reaction between Xylulose-5-phosphate and Ribose-5-Phosphate toyield Glyceraldehyde-3-phosphate and Sedoheptulose-7-Phosphate.arrow_forward
- What is the difference between a ‘synthetase’ and a ‘synthase’?arrow_forwardIn three separate experiments, pyruvate labeled with 13C at C-1, C-2, or C-3 is introduced to cells undergoing active metabolism. Trace the fate of each carbon through the TCA cycle and show when each of these carbons produces 13CO2.a. Glucose is similarly labeled at C-2 with 13C. During which reaction will this labeled carbon be released as 13CO2?arrow_forwardDraw the Krebs Cycle and show the entry points for the amino acids Alanine,Glutamic Acid, Asparagine, and Valine into the Krebs Cycle. How many rounds of Krebs will be required to waste all Carbons of Glutamic Acidas CO2?arrow_forward
- Suppose the data below are obtained for an enzyme catalyzed reaction with and without the inhibitor I. (s)( mM) 0.2 0.4 0.8 1.0 2.0 4.0 V without i (mM/min) 5.0 7.5 10.0 10.7 12.5 13.6 V with I (mM/min) 3.0 5.0 7.5 8.3 10.7 12.5 Make a Lineweaver Burke plot for this data using graph paper or a spreadsheet Calculate KM and Vmax without inhibitor. What type of inhibition is observed? show graph and work 2. Give the Lineweaver Burk equation and define all the parameters. 3. When substrate concentration is much greater than Km, the rate of catalysis is almost equal to a. kcat b. none of these c. all of these d. Kd e. Vmaxarrow_forwardPlease explain the process of how an axon degenerates in the central nervous system following injury and how it affects the neuron/cell body, as well as presynaptic and postsynaptic neurons. Explain processes such as chromatolysis and how neurotrophin signaling works.arrow_forwardPlease help determine the Relative Response Ratio of my GC-MS laboratory: Laboratory: Alcohol Content in Hand Sanditizers Internal Standard: Butanol Standards of Alcohols: Methanol, Ethanol, Isopropyl, n-Propanol, Butanol Recorded Retention Times: 0.645, 0.692, 0.737, 0.853, 0.977 Formula: [ (Aanalyte / Canalyte) / (AIS / CIS) ]arrow_forward
- Please help determine the Relative Response Ratio of my GC-MS laboratory: Laboratory: Alcohol Content in Hand Sanditizers Internal Standard: Butanol Standards of Alcohols: Methanol, Ethanol, Isopropyl, n-Propanol, Butanol Recorded Retention Times: 0.645, 0.692, 0.737, 0.853, 0.977 Formula: [ (Aanalyte / Canalyte) / (AIS / CIS) ]arrow_forwardplease draw it for me and tell me where i need to modify the structurearrow_forwardPlease help determine the standard curve for my Kinase Activity in Excel Spreadsheet. Link: https://mnscu-my.sharepoint.com/personal/vi2163ss_go_minnstate_edu/_layouts/15/Doc.aspx?sourcedoc=%7B958f5aee-aabd-45d7-9f7e-380002892ee0%7D&action=default&slrid=9b178ea1-b025-8000-6e3f-1cbfb0aaef90&originalPath=aHR0cHM6Ly9tbnNjdS1teS5zaGFyZXBvaW50LmNvbS86eDovZy9wZXJzb25hbC92aTIxNjNzc19nb19taW5uc3RhdGVfZWR1L0VlNWFqNVc5cXRkRm4zNDRBQUtKTHVBQldtcEtWSUdNVmtJMkoxQzl3dmtPVlE_cnRpbWU9eEE2X291ZHIzVWc&CID=e2126631-9922-4cc5-b5d3-54c7007a756f&_SRM=0:G:93 Determine the amount of VRK1 is present 1. Average the data and calculate the mean absorbance for each concentration/dilution (Please over look for Corrections) 2. Blank Correction à Subtract 0 ug/mL blank absorbance from all readings (Please over look for Corrections) 3. Plot the Standard Curve (Please over look for Corrections) 4. Convert VRK1 concentration from ug/mL to g/L 5. Use the molar mass of VRK1 to convert to M and uM…arrow_forward
- BiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStax


