The Defibrillator A defibrillator is designed to pass a large current through a patient’s torso in order to stop dangerous heart rhythms. Its key part is a capacitor that is charged to a high voltage. The patient’s torso plays the role of a resistor in an RC circuit. When a switch is closed, the capacitor discharges through the patient’s torso. A jolt from a defibrillator is intended to be intense and rapid; the maximum current is very large, so the capacitor discharges quickly. This rapid pulse depolarizes the heart, stopping all electrical activity. This allows the heart’s internal nerve circuitry to reestablish a healthy rhythm. A typical defibrillator has a 32 μ F capacitor charged to 5000 V. The electrodes connected to the patient are coated with a conducting gel that reduces the resistance of the skin to where the effective resistance of the patient’s torso is 100 Ω. 83. For the values noted in the passage above, what is the time constant for the discharge of the capacitor? A. 3.2 μ s B. 160 μ s C. 3.2 ms D. 160 ms
The Defibrillator A defibrillator is designed to pass a large current through a patient’s torso in order to stop dangerous heart rhythms. Its key part is a capacitor that is charged to a high voltage. The patient’s torso plays the role of a resistor in an RC circuit. When a switch is closed, the capacitor discharges through the patient’s torso. A jolt from a defibrillator is intended to be intense and rapid; the maximum current is very large, so the capacitor discharges quickly. This rapid pulse depolarizes the heart, stopping all electrical activity. This allows the heart’s internal nerve circuitry to reestablish a healthy rhythm. A typical defibrillator has a 32 μ F capacitor charged to 5000 V. The electrodes connected to the patient are coated with a conducting gel that reduces the resistance of the skin to where the effective resistance of the patient’s torso is 100 Ω. 83. For the values noted in the passage above, what is the time constant for the discharge of the capacitor? A. 3.2 μ s B. 160 μ s C. 3.2 ms D. 160 ms
A defibrillator is designed to pass a large current through a patient’s torso in order to stop dangerous heart rhythms. Its key part is a capacitor that is charged to a high voltage. The patient’s torso plays the role of a resistor in an RC circuit. When a switch is closed, the capacitor discharges through the patient’s torso. A jolt from a defibrillator is intended to be intense and rapid; the maximum current is very large, so the capacitor discharges quickly. This rapid pulse depolarizes the heart, stopping all electrical activity. This allows the heart’s internal nerve circuitry to reestablish a healthy rhythm.
A typical defibrillator has a 32 μF capacitor charged to 5000 V. The electrodes connected to the patient are coated with a conducting gel that reduces the resistance of the skin to where the effective resistance of the patient’s torso is 100 Ω.
83. For the values noted in the passage above, what is the time constant for the discharge of the capacitor?
No chatgpt pls will upvote Already got wrong chatgpt answer
Chapter 23 Solutions
College Physics: A Strategic Approach Technology Update, Books a la Carte Plus Mastering Physics with Pearson eText -- Access Card Package (3rd Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
How To Solve Any Resistors In Series and Parallel Combination Circuit Problems in Physics; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=eFlJy0cPbsY;License: Standard YouTube License, CC-BY