Batteries are recharged by connecting them to a power supply (i.e., another battery) of greater emf in such a way that the current flows into the positive terminal of the battery being recharged, as was shown in Example 23.1. This reverse current through the battery replenishes its chemicals. The current is kept fairly low so as not to overheat the battery being recharged by dissipating energy in its internal resistance. a. Suppose the real battery of Figure P23.55 is rechargeable. What emf power supply should be used for a 0.75 A recharging current? b. If this power supply charges the battery for 10 minutes, how much energy goes into the battery? How much is dissipated as thermal energy in the internal resistance?
Batteries are recharged by connecting them to a power supply (i.e., another battery) of greater emf in such a way that the current flows into the positive terminal of the battery being recharged, as was shown in Example 23.1. This reverse current through the battery replenishes its chemicals. The current is kept fairly low so as not to overheat the battery being recharged by dissipating energy in its internal resistance. a. Suppose the real battery of Figure P23.55 is rechargeable. What emf power supply should be used for a 0.75 A recharging current? b. If this power supply charges the battery for 10 minutes, how much energy goes into the battery? How much is dissipated as thermal energy in the internal resistance?
Batteries are recharged by connecting them to a power supply (i.e., another battery) of greater emf in such a way that the current flows into the positive terminal of the battery being recharged, as was shown in Example 23.1. This reverse current through the battery replenishes its chemicals. The current is kept fairly low so as not to overheat the battery being recharged by dissipating energy in its internal resistance.
a. Suppose the real battery of Figure P23.55 is rechargeable. What emf power supply should be used for a 0.75 A recharging current?
b. If this power supply charges the battery for 10 minutes, how much energy goes into the battery? How much is dissipated as thermal energy in the internal resistance?
Part A
m
2πkT
) 3/2
Calculate the integral (v) = f vƒ (v)dv. The function f(v) describing the actual distribution of molecular speeds is called the Maxwell-Boltzmann distribution,
=
ƒ(v) = 4π (· v²e-mv²/2kT
. (Hint: Make the change of variable v² =x and use the tabulated integral foxne
integer and a is a positive constant.)
Express your answer in terms of the variables T, m, and appropriate constants.
-ax dx
n!
-
an+1
where n is a positive
(v)
=
ΕΠΙ ΑΣΦ
Submit Previous Answers Request Answer
?
× Incorrect; Try Again; 4 attempts remaining
Al Study Tools
Looking for some guidance? Let's work through a few related
practice questions before you go back to the real thing.
This won't impact your score, so stop at anytime and ask for
clarification whenever you need it.
Ready to give it a try?
Start
Starter the rule of significant
Please solve this problem and give step by step explanations on each step while breaking it down please. Thank you!!
Chapter 23 Solutions
College Physics: A Strategic Approach Technology Update, Books a la Carte Plus Mastering Physics with Pearson eText -- Access Card Package (3rd Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
How To Solve Any Resistors In Series and Parallel Combination Circuit Problems in Physics; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=eFlJy0cPbsY;License: Standard YouTube License, CC-BY