GENERAL,ORGANIC, & BIOLOGICAL CHEM-ACCES
GENERAL,ORGANIC, & BIOLOGICAL CHEM-ACCES
4th Edition
ISBN: 9781265982959
Author: SMITH
Publisher: MCG
bartleby

Concept explainers

Question
Book Icon
Chapter 23, Problem 56P
Interpretation Introduction

(a)

Interpretation:

The product formed from NADH in the electron transport chain should be determined.

Concept Introduction:

Aerobic respiration occurs in two steps;

  • Glycolysis
  • Citric acid cycle
Glycolysis is the first step that forms pyruvate as given below;

  Glucose + 2ATP + 2NAD+ + 4ADP + 2Pi  2 Pyruvate + 4ATP + 2NADH + 2H+

In the presence of oxygen means aerobic respiration, this pyruvate enters in the Krebs cycle and extracts energy in the form of electrons transfer. Electrons are transferred from the pyruvate to the receptors like NAD+, GDP, and FAD and CO2 gas is formed as the waste product. The products of citric acid cycles act as precursors for electron transport chains.

Expert Solution
Check Mark

Answer to Problem 56P

NADH produces two ATPs for every NADH2 molecule.

Explanation of Solution

Citric acid cycle is also known as tricarboxylic acid cycle or Krebs cycles. In this cycle all intermediates are carboxylate anions mainly which are formed from di or tricarboxylic acid during the reaction. It initiates with the reaction of acetyl CoA (a 2 C's substance) that reacts with a 4 C's substance to form a product of 6 C's. Later carbon atoms are removed in the form of carbon dioxide gas.

In this process, 2 H's are transferred to FAD and produces FADH2. This energy carrier remains attached to the enzyme and transfers the electrons to the electron transport chain. The electron transport chain is a series of four enzyme complexes and two coenzymes:

  • Complex I to Complex IV
  • Coenzymes -ubiquinone and Cytochrome c
NADH is created from through reduction-oxidation reactions in the Krebs cycle during respiration. It gives its electrons in the electron transport chain that produces two ATPs for every NADH2 molecule.
Interpretation Introduction

(b)

Interpretation:

The product formed from FADH2 in the electron transport chain should be determined.

Concept Introduction:

Aerobic respiration occurs in two steps;

  • Glycolysis
  • Citric acid cycle
Glycolysis is the first step that forms pyruvate as given below;

  Glucose + 2ATP + 2NAD+ + 4ADP + 2Pi  2 Pyruvate + 4ATP + 2NADH + 2H+

In the presence of oxygen means aerobic respiration, this pyruvate enters in the Krebs cycle and extracts energy in the form of electrons transfer. Electrons are transferred from the pyruvate to the receptors like NAD+, GDP, and FAD and CO2 gas is formed as the waste product. The products of citric acid cycles act as precursors for electron transport chains.

Expert Solution
Check Mark

Answer to Problem 56P

The FADH2 molecule produces two ATP molecules in the electron transport chain.

Explanation of Solution

Citric acid cycle is also known as tricarboxylic acid cycle or Krebs cycles. In this cycle all intermediates are carboxylate anions mainly which are formed from di or tricarboxylic acid during the reaction. It initiates with the reaction of acetyl CoA (a 2 C's substance) that reacts with a 4 C's substance to form a product of 6 C's. Later carbon atoms are removed in the form of carbon dioxide gas.

In this process, 2 H's are transferred to FAD and produces FADH2. This energy carrier remains attached to the enzyme and transfers the electrons to the electron transport chain. The electron transport chain is a series of four enzyme complexes and two coenzymes:

  • Complex I to Complex IV
  • Coenzymes -ubiquinone and Cytochrome c

  FADH2 is created from through reduction-oxidation reactions in the Krebs cycle during respiration. It gives its electrons in the electron transport chain that produces two ATPsmolecules.

Interpretation Introduction

(c)

Interpretation:

The product formed from ADP in the electron transport chain should be determined.

Concept Introduction:

Aerobic respiration occurs in two steps;

  • Glycolysis
  • Citric acid cycle
Glycolysis is the first step that forms pyruvate as given below;

  Glucose + 2ATP + 2NAD+ + 4ADP + 2Pi  2 Pyruvate + 4ATP + 2NADH + 2H+

In the presence of oxygen means aerobic respiration, this pyruvate enters in the Krebs cycle and extracts energy in the form of electrons transfer. Electrons are transferred from the pyruvate to the receptors like NAD+, GDP, and FAD and CO2 gas is formed as the waste product. The products of citric acid cycles act as precursors for electron transport chains.

Expert Solution
Check Mark

Answer to Problem 56P

In the electron transport chain, ADP involves in the formation of ATP molecules in the mitochondria.

Explanation of Solution

Citric acid cycle is also known as tricarboxylic acid cycle or Krebs cycles. In this cycle all intermediates are carboxylate anions mainly which are formed from di or tricarboxylic acid during the reaction.

In this process, 2 H's are transferred to FAD and produces FADH2. This energy carrier remains attached to the enzyme and transfers the electrons to the electron transport chain. The electron transport chain is a series of four enzyme complexes and two coenzymes:

  • Complex I to Complex IV
  • Coenzymes -ubiquinone and Cytochrome c
In the electron transport chain, ADP involves in the formation of ATP molecules in the mitochondria.
Interpretation Introduction

(d)

Interpretation:

The product formed from O2in the electron transport chain should be determined.

Concept Introduction:

Aerobic respiration occurs in two steps;

  • Glycolysis
  • Citric acid cycle
Glycolysis is the first step that forms pyruvate as given below;

  Glucose + 2ATP + 2NAD+ + 4ADP + 2Pi  2 Pyruvate + 4ATP + 2NADH + 2H+

In the presence of oxygen means aerobic respiration, this pyruvate enters in the Krebs cycle and extracts energy in the form of electrons transfer. Electrons are transferred from the pyruvate to the receptors like NAD+, GDP, and FAD and CO2 gas is formed as the waste product. The products of citric acid cycles act as precursors for electron transport chains.

Expert Solution
Check Mark

Answer to Problem 56P

Electron transport chain process involves in the pumping of the protons from the mitochondrial matrix to the intermembrane space that reduces the oxygen to water molecule.

Explanation of Solution

Citric acid cycle is also known as tricarboxylic acid cycle or Krebs cycles. In this cycle all intermediates are carboxylate anions mainly which are formed from di or tricarboxylic acid during the reaction.

In this process, 2 H's are transferred to FAD and produces FADH2. This energy carrier remains attached to the enzyme and transfers the electrons to the electron transport chain. The electron transport chain is a series of four enzyme complexes and two coenzymes:

  • Complex I to Complex IV
  • Coenzymes -ubiquinone and Cytochrome c
In the electron transport chain, is embedded in the inner mitochondrial membrane and it involves in the shuffles in the electrons from NADH and FADH2 to molecular oxygen.

Electron transport chain process involves in the pumping of the protons from the mitochondrial matrix to the intermembrane space that reduces the oxygen to water molecule.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Below is the SN1 reaction of (S)-3-chlorocyclohexene and hydroxide (OH). Draw the missing curved arrows, lone pairs of electrons, and nonzero formal charges. In the third box, draw the two enantiomeric products that will be produced. 5th attempt Please draw all four bonds at chiral centers. Draw the two enantiomeric products that will be produced. Draw in any hydrogen at chiral centers. 1000 4th attempt Feedback Please draw all four bonds at chiral centers. 8. R5 HO: See Periodic Table See Hint H Cl Br Jid See Periodic Table See Hint
Show that a molecule with configuration π4 has a cylindrically symmetric electron distribution. Hint: Let the π orbitals be equal to xf and yf, where f is a function that depends only on the distance from the internuclear axis.
(a) Verify that the lattice energies of the alkali metal iodides are inversely proportional to the distances between the ions in MI (M = alkali metal) by plotting the lattice energies given below against the internuclear distances dMI. Is the correlation good? Would a better fit be obtained by plotting the lattice energies as a function of (1 — d*/d)/d, as theoretically suggested, with d* = 34.5 pm? You must use a standard graphing program to plot the graph. It generates an equation for the line and calculates a correlation coefficient. (b) From the graph obtained in (a), estimate the lattice energy of silver iodide. (c) Compare the results of (b) with the experimental value of 886 kJ/mol. If they do not agree, explain the deviation.

Chapter 23 Solutions

GENERAL,ORGANIC, & BIOLOGICAL CHEM-ACCES

Ch. 23.5 - Prob. 23.3PPCh. 23.5 - Prob. 23.9PCh. 23.5 - Prob. 23.10PCh. 23.5 - Prob. 23.11PCh. 23.6 - Prob. 23.12PCh. 23.6 - At several points in the electron transport chain,...Ch. 23.6 - In which region of the mitochondrion-the matrix or...Ch. 23 - Prob. 15PCh. 23 - Explain why mitochondria are called the...Ch. 23 - Prob. 17PCh. 23 - Prob. 18PCh. 23 - Prob. 19PCh. 23 - Prob. 20PCh. 23 - What are coupled reactions and why does coupling...Ch. 23 - Prob. 22PCh. 23 - Prob. 23PCh. 23 - Prob. 24PCh. 23 - Prob. 25PCh. 23 - Prob. 26PCh. 23 - Prob. 27PCh. 23 - Prob. 28PCh. 23 - Prob. 29PCh. 23 - Prob. 30PCh. 23 - Prob. 31PCh. 23 - Prob. 32PCh. 23 - (a) Draw the structure of the high-energy...Ch. 23 - Prob. 34PCh. 23 - Classify each substance as an oxidizing agent, a...Ch. 23 - Classify each substance as an oxidizing agent, a...Ch. 23 - When a substrate is oxidized, is NAD+ oxidized or...Ch. 23 - When a substrate is reduced, is FADH2 oxidized or...Ch. 23 - Prob. 39PCh. 23 - Prob. 40PCh. 23 - Prob. 41PCh. 23 - Prob. 42PCh. 23 - Prob. 43PCh. 23 - Prob. 44PCh. 23 - Prob. 45PCh. 23 - Prob. 46PCh. 23 - The conversion of isocitrate to ketoglutarate in...Ch. 23 - Prob. 48PCh. 23 - Prob. 49PCh. 23 - Prob. 50PCh. 23 - Prob. 51PCh. 23 - What is the role of each of the following in the...Ch. 23 - What is the role of each of the following in the...Ch. 23 - Prob. 54PCh. 23 - Prob. 55PCh. 23 - Prob. 56PCh. 23 - Prob. 57PCh. 23 - Prob. 58PCh. 23 - Prob. 59PCh. 23 - Prob. 60PCh. 23 - Prob. 61PCh. 23 - Prob. 62PCh. 23 - Prob. 63PCh. 23 - Prob. 64PCh. 23 - Prob. 65PCh. 23 - Prob. 66PCh. 23 - Prob. 67PCh. 23 - Prob. 68PCh. 23 - Prob. 69PCh. 23 - Prob. 70PCh. 23 - Prob. 71PCh. 23 - Prob. 72PCh. 23 - Prob. 73PCh. 23 - Prob. 74PCh. 23 - Prob. 75CPCh. 23 - Prob. 76CP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Organic And Biological Chemistry
Chemistry
ISBN:9781305081079
Author:STOKER, H. Stephen (howard Stephen)
Publisher:Cengage Learning,
Text book image
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9781305080485
Author:John E. McMurry
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning