Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
4th Edition
ISBN: 9780132273244
Author: Doug Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 43P
(II) Equipotential surfaces are to be drawn 100 V apart near a very large uniformly charged metal plate carrying a surface charge density σ = 0.75 μC/m2. How far apart (in space) are the equipotential surfaces?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How much charge can be placed on a capacitor with air between the plates before it breaks down if the area of each of the plates is 5.00 cm2? (b) What If? Find the maximum charge if polystyrene is used between the plates instead of air.
(a) How much charge can be placed on a capacitor withair between the plates before it breaks down if the area ofeach plate is 5.00 cm2 ? (b) Find the maximum charge ifpolystyrene is used between the plates instead of air. Assumethe dielectric strength of air is 3.00 X 10^6 V/m and that of polystyrene is 24.0 X 10^6 V/m
An equipotential surface must be perpendicular to the electric field at certain points.
TRUE or FALSE?
Chapter 23 Solutions
Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
Ch. 23.2 - CHAPTER-OPENING QUESTIONGuess now! Consider a pair...Ch. 23.2 - On a dry day, a person can become electrically...Ch. 23.3 - What is the potential at a distance of 3.0cm from...Ch. 23.3 - Consider the three pairs of charges, Q1, and Q2,...Ch. 23.8 - Prob. 1EECh. 23.8 - The kinetic energy of a 1000-kg automobile...Ch. 23 - If two points are at the same potential, does this...Ch. 23 - If a negative charge is initially at rest in an...Ch. 23 - State clearly the difference (a) between electric...Ch. 23 - An electron is accelerated by a potential...
Ch. 23 - Can a particle ever move from a region of low...Ch. 23 - If V = 0 at a point in space, must E=0? If E=0 at...Ch. 23 - When dealing with practical devices, we often take...Ch. 23 - Can two equipotential lines cross? Explain.Ch. 23 - Draw in a few equipotential lines in Fig, 2134b...Ch. 23 - What can you say about the electric field in a...Ch. 23 - A satellite orbits the Earth along a gravitational...Ch. 23 - Suppose the charged ring of Example 238 was not...Ch. 23 - Consider a metal conductor in the shape of a...Ch. 23 - Equipotential lines are spaced 1.00 V apart. Does...Ch. 23 - A conducting sphere carries a charge Q and a...Ch. 23 - At a particular location, the electric field...Ch. 23 - Equipotential lines are spaced 1.00 V apart. Does...Ch. 23 - If the electric field E is uniform in a region,...Ch. 23 - Is the electric potential energy of two unlike...Ch. 23 - (I) What potential difference is needed to stop an...Ch. 23 - (I) How much work does the electric field do in...Ch. 23 - (I) An electron acquires 5.25 1016 J of kinetic...Ch. 23 - (II) The work done by an external force to move a...Ch. 23 - (I) Thunderclouds typically develop voltage...Ch. 23 - (I) The electric field between two parallel plates...Ch. 23 - (I) What is the maximum amount of charge that a...Ch. 23 - (I) What is the magnitude of the electric field...Ch. 23 - (I) What minimum radius must a large conducting...Ch. 23 - (II) A manufacturer claims that a carpet will not...Ch. 23 - (II) A uniform electric field E=4.20N/Ci points in...Ch. 23 - (II) The electric potential of a very large...Ch. 23 - (II) The Earth produces an inwardly directed...Ch. 23 - (II) A 32-cm-diameter conducting sphere is charged...Ch. 23 - (II) An insulated spherical conductor of radius r1...Ch. 23 - (II) Determine the difference in potential between...Ch. 23 - (II) Suppose the end of your finger is charged....Ch. 23 - (II) Estimate the electric field in the membrane...Ch. 23 - (II) A nonconducting sphere of radius r0 carries a...Ch. 23 - (III) Repeat Problem 19 assuming the charge...Ch. 23 - (III) The volume charge density E within a sphere...Ch. 23 - (III) A hollow spherical conductor, carrying a net...Ch. 23 - (III) A very long conducting cylinder (length ) of...Ch. 23 - (I) A point charge Q creates an electric potential...Ch. 23 - (I) (a) What is the electric potential 0.50 1010...Ch. 23 - (a) Because of the inverse square nature of the...Ch. 23 - (II) +25C point charge is placed 6.0 cm from an...Ch. 23 - (II) Point a is 26 cm north of a 3.8 C point...Ch. 23 - (II) How much voltage must be used to accelerate a...Ch. 23 - (II) Two identical +5.5 C point charges are...Ch. 23 - (II) An electron starts from rest 42.5cm from a...Ch. 23 - (II) Two equal but opposite charges are separated...Ch. 23 - (II) A thin circular ring of radius R (as in Fig....Ch. 23 - (II) Three point charges are arranged at the...Ch. 23 - (II) A flat ring of inner radius R1 and outer...Ch. 23 - (II) A total charge Q is uniformly distributed on...Ch. 23 - (II) A 12.0-cm-radius thin ring carries a...Ch. 23 - (II) A thin rod of length 2 is centered on the x...Ch. 23 - (II) Determine the potential V(x) for points along...Ch. 23 - (III) The charge on the rod of Fig. 2331 has a...Ch. 23 - (III) Suppose the flat circular disk of Fig. 2315...Ch. 23 - (I) Draw a conductor in the shape of a football....Ch. 23 - (II) Equipotential surfaces are to be drawn 100 V...Ch. 23 - (II) A metal sphere of radius r0 = 0.44 m carries...Ch. 23 - (II) Calculate the electric potential due to a...Ch. 23 - (III) The dipole moment, considered as a vector,...Ch. 23 - (I) Show that the electric field of a single point...Ch. 23 - (I) What is the potential gradient just outside...Ch. 23 - (II) The electric potential between two parallel...Ch. 23 - () The electric potential in a region of space...Ch. 23 - (II) In a certain region of space, the electric...Ch. 23 - (II) A dust particle with mass of 0.050 g and a...Ch. 23 - (III) Use the results or Problems 38 and 39 to...Ch. 23 - (I) How much work must be done to bring three...Ch. 23 - (I) What potential difference is needed to give a...Ch. 23 - (I) What is the speed of (a) a 1.5-keV (kinetic...Ch. 23 - (II) Many chemical reactions release energy....Ch. 23 - (II) An alpha particle (which is a helium nucleus,...Ch. 23 - (II) Write the total electrostatic potential...Ch. 23 - (II) Four equal point charges, Q, are fixed at the...Ch. 23 - (II) An electron starting from rest acquires 1.33...Ch. 23 - (II) Determine the total electrostatic potential...Ch. 23 - (II) The liquid-drop model of the nucleus suggests...Ch. 23 - (III) Determine the total electrostatic potential...Ch. 23 - (I) Use the ideal gas as a model to estimate the...Ch. 23 - (III) Electrons are accelerated by 6.0kV in a CRT....Ch. 23 - (III) In a given CRT, electrons are accelerated...Ch. 23 - If the electrons in a single raindrop, 3.5 mm in...Ch. 23 - By rubbing a nonconducting material, a charge of...Ch. 23 - Sketch the electric field and equipotential lines...Ch. 23 - A +33 C point charge is placed 36 cm from an...Ch. 23 - At each corner of a cube of side there is a point...Ch. 23 - In a television picture tube (CRT), electrons are...Ch. 23 - Four point charges are located at the corners of a...Ch. 23 - In a photocell, ultraviolet (UV) light provides...Ch. 23 - An electron is accelerated horizontally from rest...Ch. 23 - Three charges are at the corners of an equilateral...Ch. 23 - Near the surface of the Earth there is an electric...Ch. 23 - A lightning flash transfers 4.0 C of charge and...Ch. 23 - Determine the components of the electric field. Ex...Ch. 23 - A nonconducting sphere of radius r2 contains a...Ch. 23 - A thin flat nonconducting disk, with radius R0 and...Ch. 23 - A Geiger counter is used to detect charged...Ch. 23 - A Van de Graaff generator (Fig. 2341) can develop...Ch. 23 - The potential in a region of space is given by V =...Ch. 23 - A charge q1 of mass m rests on the y axis at a...Ch. 23 - (II) A dipole is composed of a 1.0 nC charge at x...Ch. 23 - (II) A thin flat disk of radius R0 carries a total...Ch. 23 - (III) You are trying to determine an unknown...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Some organizations are starting to envision a sustainable societyone in which each generation inherits sufficie...
Campbell Essential Biology (7th Edition)
Complete and balance each equation. If no reaction occurs, write NO REACTION. a. KI(aq)+BaS(aq) b. K2SO4(aq)+Ba...
Introductory Chemistry (6th Edition)
53. This reaction was monitored as a function of time:
A plot of In[A] versus time yields a straight ...
Chemistry: Structure and Properties (2nd Edition)
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
The pHactivity profile for glucose-6-phosphate isomerase indicates the participation of a group with a pKa = 6....
Organic Chemistry (8th Edition)
What properties do all types of epithelia share?
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two very large metal plates are placed 2.0 cm apart, with a potential difference of 12 V between them. Consider one plate to be at 12 V, and the other at 0 V. (a) Sketch the equipotential surfaces for 0, 4, 8, and 12 V. (b) Next sketch in some electric field lines, and confirm that they are perpendicular to the equipotential lines.arrow_forwardWhat is the maximum charge that can be stored on the 8.00-cm2 plates of an air-filled parallel-plate capacitor beforebreakdown occurs? The dielectric strength of air is 3.00 MV/m.arrow_forwardCheck Your Understanding What are the equipotential surfaces for an infinite line charge?arrow_forward
- A large metal plate is charged uniformly to a density of a=2.0109C/m2 . How far apart are the equipotential surfaces that represent a potential difference of 25 V?arrow_forwardP:57) A point charge of q = 10 µC is in a dielectric medium with relative dielectric constant ɛr = 4.5.The energy stored in the region outside the sphere whose center is the point where the charge is; R = 10 m,Find for sphere radii of R = 1 m, R = 10 cm, and R = 1 cm.arrow_forward(i) Derive the expression for the electric potential due to an electric dipole at a point on its axial line. (ii) Depict the equipotential surfaces due to an electric dipole.arrow_forward
- 4. (a) Asolid sphere of charge, Q = 2μC with a radius R = 2m is held fixed in space. Point a is located at 12 m from the centre of the sphere and point b at 10m. What is the minimum work that has to be done on charge q = 1μC in order to bring it from point a to point b in the configuration shown below.arrow_forwardDescribe the equipotential surfaces for (a) an infinite line of charge and (b) a uniformly charged sphere. when (A) the charge is tripled, when (B) the radius of the sphere is doubled, when (C) the surface is changed to a cube, and when (D) the charge is moved to another location inside the surface.arrow_forward(a) If an isolated conducting sphere 10 cm in radius has a net charge of 4.0 mC and if V=0 at infinity, what is the potential on the surface of the sphere? (b) Can this situation actually occur, given that the air around the sphere undergoes electrical breakdown when the field exceeds 3.0 MV/m?arrow_forward
- (i) Use Gauss’s law to find the electric field due to a uniformly charged infinite plane sheet. What is the direction of field for positive and negative charge densities? (ii) Find the ratio of the potential differences that must be applied across the parallel and series combination of two capacitors Cj and C2 with their capacitances in the ratio 1 : 2 so that the energy stored in the two cases becomes the same.arrow_forward(a) How much charge can be placed on a capacitor with air between the plates before it breaks down if the area of each plate is 8.00 cm?? (Assume air has a dielectric strength of 3.00 x 10° v/m and dielectric constant of 1.00.) nC (b) Find the maximum charge if polystyrene is used between the plates instead of air. (Assume polystyrene has a dielectric strength of 24.0 x 10° v/m and dielectric constant of 2.56.) nCarrow_forward(i) If two similar large plates, each of area A having surface charge densities +a and -a are separated by a distance d in air, find the expressions for (a) field at points between the two plates and on outer side of the plates. Specify the direction of the field in each case. (b) the potential difference between the plates. (c) the capacitance of the capacitor so formed. (ii) Two metallic spheres of radii R and 2R are charged so that both of these have same surface charge density a. If they are connected to each other with a conducting wire, in which direction will the charge flow and why?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics Capacitor & Capacitance part 7 (Parallel Plate capacitor) CBSE class 12; Author: LearnoHub - Class 11, 12;https://www.youtube.com/watch?v=JoW6UstbZ7Y;License: Standard YouTube License, CC-BY