Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
4th Edition
ISBN: 9780132273244
Author: Doug Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 49P
(II) The electric potential between two parallel plates is given by V(x) = (8.0 V/m) x + 5.0 V, with x = 0 taken at one of the plates and x positive in the direction toward the other plate. What is the charge density on the plates?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a) How much charge can be placed on a capacitor with air between the plates before it breaks down if the area of each of the plates is 5.00 cm2? (b) What If? Find the maximum charge if polystyrene is used between the plates instead of air.
(b)
Two oppositely charged parallel plates are held 2.0 mm apart. A 8.0 x10-$ J of
work is needed to move a 4 µC test charge from one plate to the other. Calculate
the electric field between the plates.
(b) An air field parallel-plate capacitor has a plate spacing of 1.50 mm and an electric
potential difference of 65.0 V. (I) What is the electric field between the plates? (II) Find
the surface charge density of each plate and (III) Calculate the total charge on each plate
of dimensions 4.00 cm x 5.00 cm.
Chapter 23 Solutions
Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
Ch. 23.2 - CHAPTER-OPENING QUESTIONGuess now! Consider a pair...Ch. 23.2 - On a dry day, a person can become electrically...Ch. 23.3 - What is the potential at a distance of 3.0cm from...Ch. 23.3 - Consider the three pairs of charges, Q1, and Q2,...Ch. 23.8 - Prob. 1EECh. 23.8 - The kinetic energy of a 1000-kg automobile...Ch. 23 - If two points are at the same potential, does this...Ch. 23 - If a negative charge is initially at rest in an...Ch. 23 - State clearly the difference (a) between electric...Ch. 23 - An electron is accelerated by a potential...
Ch. 23 - Can a particle ever move from a region of low...Ch. 23 - If V = 0 at a point in space, must E=0? If E=0 at...Ch. 23 - When dealing with practical devices, we often take...Ch. 23 - Can two equipotential lines cross? Explain.Ch. 23 - Draw in a few equipotential lines in Fig, 2134b...Ch. 23 - What can you say about the electric field in a...Ch. 23 - A satellite orbits the Earth along a gravitational...Ch. 23 - Suppose the charged ring of Example 238 was not...Ch. 23 - Consider a metal conductor in the shape of a...Ch. 23 - Equipotential lines are spaced 1.00 V apart. Does...Ch. 23 - A conducting sphere carries a charge Q and a...Ch. 23 - At a particular location, the electric field...Ch. 23 - Equipotential lines are spaced 1.00 V apart. Does...Ch. 23 - If the electric field E is uniform in a region,...Ch. 23 - Is the electric potential energy of two unlike...Ch. 23 - (I) What potential difference is needed to stop an...Ch. 23 - (I) How much work does the electric field do in...Ch. 23 - (I) An electron acquires 5.25 1016 J of kinetic...Ch. 23 - (II) The work done by an external force to move a...Ch. 23 - (I) Thunderclouds typically develop voltage...Ch. 23 - (I) The electric field between two parallel plates...Ch. 23 - (I) What is the maximum amount of charge that a...Ch. 23 - (I) What is the magnitude of the electric field...Ch. 23 - (I) What minimum radius must a large conducting...Ch. 23 - (II) A manufacturer claims that a carpet will not...Ch. 23 - (II) A uniform electric field E=4.20N/Ci points in...Ch. 23 - (II) The electric potential of a very large...Ch. 23 - (II) The Earth produces an inwardly directed...Ch. 23 - (II) A 32-cm-diameter conducting sphere is charged...Ch. 23 - (II) An insulated spherical conductor of radius r1...Ch. 23 - (II) Determine the difference in potential between...Ch. 23 - (II) Suppose the end of your finger is charged....Ch. 23 - (II) Estimate the electric field in the membrane...Ch. 23 - (II) A nonconducting sphere of radius r0 carries a...Ch. 23 - (III) Repeat Problem 19 assuming the charge...Ch. 23 - (III) The volume charge density E within a sphere...Ch. 23 - (III) A hollow spherical conductor, carrying a net...Ch. 23 - (III) A very long conducting cylinder (length ) of...Ch. 23 - (I) A point charge Q creates an electric potential...Ch. 23 - (I) (a) What is the electric potential 0.50 1010...Ch. 23 - (a) Because of the inverse square nature of the...Ch. 23 - (II) +25C point charge is placed 6.0 cm from an...Ch. 23 - (II) Point a is 26 cm north of a 3.8 C point...Ch. 23 - (II) How much voltage must be used to accelerate a...Ch. 23 - (II) Two identical +5.5 C point charges are...Ch. 23 - (II) An electron starts from rest 42.5cm from a...Ch. 23 - (II) Two equal but opposite charges are separated...Ch. 23 - (II) A thin circular ring of radius R (as in Fig....Ch. 23 - (II) Three point charges are arranged at the...Ch. 23 - (II) A flat ring of inner radius R1 and outer...Ch. 23 - (II) A total charge Q is uniformly distributed on...Ch. 23 - (II) A 12.0-cm-radius thin ring carries a...Ch. 23 - (II) A thin rod of length 2 is centered on the x...Ch. 23 - (II) Determine the potential V(x) for points along...Ch. 23 - (III) The charge on the rod of Fig. 2331 has a...Ch. 23 - (III) Suppose the flat circular disk of Fig. 2315...Ch. 23 - (I) Draw a conductor in the shape of a football....Ch. 23 - (II) Equipotential surfaces are to be drawn 100 V...Ch. 23 - (II) A metal sphere of radius r0 = 0.44 m carries...Ch. 23 - (II) Calculate the electric potential due to a...Ch. 23 - (III) The dipole moment, considered as a vector,...Ch. 23 - (I) Show that the electric field of a single point...Ch. 23 - (I) What is the potential gradient just outside...Ch. 23 - (II) The electric potential between two parallel...Ch. 23 - () The electric potential in a region of space...Ch. 23 - (II) In a certain region of space, the electric...Ch. 23 - (II) A dust particle with mass of 0.050 g and a...Ch. 23 - (III) Use the results or Problems 38 and 39 to...Ch. 23 - (I) How much work must be done to bring three...Ch. 23 - (I) What potential difference is needed to give a...Ch. 23 - (I) What is the speed of (a) a 1.5-keV (kinetic...Ch. 23 - (II) Many chemical reactions release energy....Ch. 23 - (II) An alpha particle (which is a helium nucleus,...Ch. 23 - (II) Write the total electrostatic potential...Ch. 23 - (II) Four equal point charges, Q, are fixed at the...Ch. 23 - (II) An electron starting from rest acquires 1.33...Ch. 23 - (II) Determine the total electrostatic potential...Ch. 23 - (II) The liquid-drop model of the nucleus suggests...Ch. 23 - (III) Determine the total electrostatic potential...Ch. 23 - (I) Use the ideal gas as a model to estimate the...Ch. 23 - (III) Electrons are accelerated by 6.0kV in a CRT....Ch. 23 - (III) In a given CRT, electrons are accelerated...Ch. 23 - If the electrons in a single raindrop, 3.5 mm in...Ch. 23 - By rubbing a nonconducting material, a charge of...Ch. 23 - Sketch the electric field and equipotential lines...Ch. 23 - A +33 C point charge is placed 36 cm from an...Ch. 23 - At each corner of a cube of side there is a point...Ch. 23 - In a television picture tube (CRT), electrons are...Ch. 23 - Four point charges are located at the corners of a...Ch. 23 - In a photocell, ultraviolet (UV) light provides...Ch. 23 - An electron is accelerated horizontally from rest...Ch. 23 - Three charges are at the corners of an equilateral...Ch. 23 - Near the surface of the Earth there is an electric...Ch. 23 - A lightning flash transfers 4.0 C of charge and...Ch. 23 - Determine the components of the electric field. Ex...Ch. 23 - A nonconducting sphere of radius r2 contains a...Ch. 23 - A thin flat nonconducting disk, with radius R0 and...Ch. 23 - A Geiger counter is used to detect charged...Ch. 23 - A Van de Graaff generator (Fig. 2341) can develop...Ch. 23 - The potential in a region of space is given by V =...Ch. 23 - A charge q1 of mass m rests on the y axis at a...Ch. 23 - (II) A dipole is composed of a 1.0 nC charge at x...Ch. 23 - (II) A thin flat disk of radius R0 carries a total...Ch. 23 - (III) You are trying to determine an unknown...
Additional Science Textbook Solutions
Find more solutions based on key concepts
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Foods packed in plastic for microwaving are a. dehydrated. b. freeze-dried. c. packaged aseptically. d. commerc...
Microbiology: An Introduction
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology (7th Edition)
61. When you blink your eye, the upper lid goes from rest with your eye open to completely covering your eye in...
College Physics: A Strategic Approach (3rd Edition)
In pea plants, plant height, seed shape, and seed color are governed by three independently assorting genes. Th...
Genetic Analysis: An Integrated Approach (3rd Edition)
As genetic testing becomes widespread, medical records will contain the results of such testing. Who should hav...
Concepts of Genetics (12th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A point charge of q=50108 C is placed at the center of an uncharged spherical conducting shell of inner radius 6.0 cm and outer radius 9.0 cm. Find the electric potential at (a) r = 4,0cm, (b) r = 8.0 cm, (c) r — 12.0 cm.arrow_forwardFor a spherical surface with radius 0.16 m and is charged by 46 nC, the electric Potential V at r = 0.38 m is (in V)arrow_forward= 5) A plastic disk of radius R= 80.0 cm is charged on one side with a uniform surface charge density o 9.06 fC/m², and then three quadrants of the disk are removed. The remaining quadrant is shown in Fig. With V=0 at infinity, a) what is the potential due to the remaining quadrant at point P, which is on the central axis of the original disk at distance D=27.8 cm from the original center? b) What is the potential under D>> limit Rarrow_forward
- Problem: A disk with radius R has uniform surface charge density O. By regarding the disk as a series of thin concentric rings, calculate the electric potential V at a point on the disk's axis a distance x from the center of the disk. Assume that the potential is zero at infinity. Answer: ( sqrt(arrow_forwardProblem: A disk with radius R has uniform surface charge density 0. By regarding the disk as a series of thin concentric rings, calculate the electric potential V at a point on the disk's axis a distance x from the center of the disk. Assume that the potential is zero at infinity. Answer: V= ( X sqrtl )- x )arrow_forwardA thin conducting spherical surface of radius ri-18 cm is centered with another conducting spherical shell of inner and outer radii r2-30.9 cm and r3-D40.1 cm; respectively. The inner surface is charged with a charge 532 nC; while the outer shell is charged with a charge -188 nC. Find the absolute value of the potential difference (between the two conductors in kV. (1 kV-103 varrow_forward
- (b) Consider two parallel, oppositely charged plates with area A = 0.1129 m², plate spacing d = 0.310 m, and charge magnitudes of |Q| = 1.00 × 10-8 C. Calculate the potential on the positively charged plate if the potential on the negatively charged plate is 0 V.arrow_forwardA metal sphere of radius 15 cm has a net charge of 3.0 * 10-8 C. (a) What is the electric field at the sphere’s surface? (b) If V = 0 at infinity, what is the electric potential at the sphere’s surface? (c) At what distance from the sphere’s surface has the electric potential decreased by 500 V?arrow_forwardTwo points A and B are 2 ст арart and a Uniform electric field E acts along the straight line AB directed from A to B with E =200 N /C. A particle of charge + 10-6 C is taken from A to B along AB. Calculate (a) the force on the charge (b) the potential difference VA – Vg and (c) the work done on the charge by E.arrow_forward
- 9) (a) Use Gauss's law to find the electric field inside and outside a long straight wire of radius R with uniform charge density p (b) Integrate E to find the potential inside and outside the wire with the boundary condition (R) = 0arrow_forward27 In Fig. 24-46, three thin plas- tic rods form quarter-circles with a common center of curvature at the origin. The uniform charges on the three rods are Qı = +30 nC, Q2 = +3.0Q1, and Q3 =-8.0Q1. What is the net electric potential at the ori- gin due to the rods? y (cm) 4.0 Q2 Qs 2.0 1.0 x (cm) Figure 24-46 Problem 27.arrow_forward(Gauss’s Law, Electric Field, Electric Potential and Electric Potential Energy ) with solutionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY