Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
4th Edition
ISBN: 9780132273244
Author: Doug Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 42P
(I) Draw a conductor in the shape of a football. This conductor carries a net negative charge, −Q. Draw in a dozen or so electric field lines and equipotential lines.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 5:
(II) Three point charges are arranged at the corners of a
square of side l as shown in Fig. 17–39. What is the poten-
tial at the fourth corner (point A)?
FIGURE 17-39
Problem 22.
l
+Q
-20
l
l
+30
A
l
(a) How much charge can be placed on a capacitor with air between the plates before it breaks down if the area of each plate is 2.00 cm? (Assume air has a dielectric strength of 3.00 x 10° V/m and
dielectric constant of 1.00.)
53
The maximum value of the electric field before breakdown in air is 3 × 10° N/C in air. nC
(b) Find the maximum charge if bakelite is used between the plates instead of air. (Assume bakelite has a dielectric strength of 24.0 x 10° V/m and dielectric constant of 4.9.)
nC
Need Help?
Watch
E Show My Work (Optional) ?
A +38 µC point charge is placed 36 cm from an identical
+38 µC charge. A –1.5 µC charge is moved from point A
to point B as shown in Fig. 17–47. What is the change in
potential energy?
В
14 cm
FIGURE 17-47
38 μC
12 cm
24 cm
38 μC
Problem 81.
A
Chapter 23 Solutions
Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
Ch. 23.2 - CHAPTER-OPENING QUESTIONGuess now! Consider a pair...Ch. 23.2 - On a dry day, a person can become electrically...Ch. 23.3 - What is the potential at a distance of 3.0cm from...Ch. 23.3 - Consider the three pairs of charges, Q1, and Q2,...Ch. 23.8 - Prob. 1EECh. 23.8 - The kinetic energy of a 1000-kg automobile...Ch. 23 - If two points are at the same potential, does this...Ch. 23 - If a negative charge is initially at rest in an...Ch. 23 - State clearly the difference (a) between electric...Ch. 23 - An electron is accelerated by a potential...
Ch. 23 - Can a particle ever move from a region of low...Ch. 23 - If V = 0 at a point in space, must E=0? If E=0 at...Ch. 23 - When dealing with practical devices, we often take...Ch. 23 - Can two equipotential lines cross? Explain.Ch. 23 - Draw in a few equipotential lines in Fig, 2134b...Ch. 23 - What can you say about the electric field in a...Ch. 23 - A satellite orbits the Earth along a gravitational...Ch. 23 - Suppose the charged ring of Example 238 was not...Ch. 23 - Consider a metal conductor in the shape of a...Ch. 23 - Equipotential lines are spaced 1.00 V apart. Does...Ch. 23 - A conducting sphere carries a charge Q and a...Ch. 23 - At a particular location, the electric field...Ch. 23 - Equipotential lines are spaced 1.00 V apart. Does...Ch. 23 - If the electric field E is uniform in a region,...Ch. 23 - Is the electric potential energy of two unlike...Ch. 23 - (I) What potential difference is needed to stop an...Ch. 23 - (I) How much work does the electric field do in...Ch. 23 - (I) An electron acquires 5.25 1016 J of kinetic...Ch. 23 - (II) The work done by an external force to move a...Ch. 23 - (I) Thunderclouds typically develop voltage...Ch. 23 - (I) The electric field between two parallel plates...Ch. 23 - (I) What is the maximum amount of charge that a...Ch. 23 - (I) What is the magnitude of the electric field...Ch. 23 - (I) What minimum radius must a large conducting...Ch. 23 - (II) A manufacturer claims that a carpet will not...Ch. 23 - (II) A uniform electric field E=4.20N/Ci points in...Ch. 23 - (II) The electric potential of a very large...Ch. 23 - (II) The Earth produces an inwardly directed...Ch. 23 - (II) A 32-cm-diameter conducting sphere is charged...Ch. 23 - (II) An insulated spherical conductor of radius r1...Ch. 23 - (II) Determine the difference in potential between...Ch. 23 - (II) Suppose the end of your finger is charged....Ch. 23 - (II) Estimate the electric field in the membrane...Ch. 23 - (II) A nonconducting sphere of radius r0 carries a...Ch. 23 - (III) Repeat Problem 19 assuming the charge...Ch. 23 - (III) The volume charge density E within a sphere...Ch. 23 - (III) A hollow spherical conductor, carrying a net...Ch. 23 - (III) A very long conducting cylinder (length ) of...Ch. 23 - (I) A point charge Q creates an electric potential...Ch. 23 - (I) (a) What is the electric potential 0.50 1010...Ch. 23 - (a) Because of the inverse square nature of the...Ch. 23 - (II) +25C point charge is placed 6.0 cm from an...Ch. 23 - (II) Point a is 26 cm north of a 3.8 C point...Ch. 23 - (II) How much voltage must be used to accelerate a...Ch. 23 - (II) Two identical +5.5 C point charges are...Ch. 23 - (II) An electron starts from rest 42.5cm from a...Ch. 23 - (II) Two equal but opposite charges are separated...Ch. 23 - (II) A thin circular ring of radius R (as in Fig....Ch. 23 - (II) Three point charges are arranged at the...Ch. 23 - (II) A flat ring of inner radius R1 and outer...Ch. 23 - (II) A total charge Q is uniformly distributed on...Ch. 23 - (II) A 12.0-cm-radius thin ring carries a...Ch. 23 - (II) A thin rod of length 2 is centered on the x...Ch. 23 - (II) Determine the potential V(x) for points along...Ch. 23 - (III) The charge on the rod of Fig. 2331 has a...Ch. 23 - (III) Suppose the flat circular disk of Fig. 2315...Ch. 23 - (I) Draw a conductor in the shape of a football....Ch. 23 - (II) Equipotential surfaces are to be drawn 100 V...Ch. 23 - (II) A metal sphere of radius r0 = 0.44 m carries...Ch. 23 - (II) Calculate the electric potential due to a...Ch. 23 - (III) The dipole moment, considered as a vector,...Ch. 23 - (I) Show that the electric field of a single point...Ch. 23 - (I) What is the potential gradient just outside...Ch. 23 - (II) The electric potential between two parallel...Ch. 23 - () The electric potential in a region of space...Ch. 23 - (II) In a certain region of space, the electric...Ch. 23 - (II) A dust particle with mass of 0.050 g and a...Ch. 23 - (III) Use the results or Problems 38 and 39 to...Ch. 23 - (I) How much work must be done to bring three...Ch. 23 - (I) What potential difference is needed to give a...Ch. 23 - (I) What is the speed of (a) a 1.5-keV (kinetic...Ch. 23 - (II) Many chemical reactions release energy....Ch. 23 - (II) An alpha particle (which is a helium nucleus,...Ch. 23 - (II) Write the total electrostatic potential...Ch. 23 - (II) Four equal point charges, Q, are fixed at the...Ch. 23 - (II) An electron starting from rest acquires 1.33...Ch. 23 - (II) Determine the total electrostatic potential...Ch. 23 - (II) The liquid-drop model of the nucleus suggests...Ch. 23 - (III) Determine the total electrostatic potential...Ch. 23 - (I) Use the ideal gas as a model to estimate the...Ch. 23 - (III) Electrons are accelerated by 6.0kV in a CRT....Ch. 23 - (III) In a given CRT, electrons are accelerated...Ch. 23 - If the electrons in a single raindrop, 3.5 mm in...Ch. 23 - By rubbing a nonconducting material, a charge of...Ch. 23 - Sketch the electric field and equipotential lines...Ch. 23 - A +33 C point charge is placed 36 cm from an...Ch. 23 - At each corner of a cube of side there is a point...Ch. 23 - In a television picture tube (CRT), electrons are...Ch. 23 - Four point charges are located at the corners of a...Ch. 23 - In a photocell, ultraviolet (UV) light provides...Ch. 23 - An electron is accelerated horizontally from rest...Ch. 23 - Three charges are at the corners of an equilateral...Ch. 23 - Near the surface of the Earth there is an electric...Ch. 23 - A lightning flash transfers 4.0 C of charge and...Ch. 23 - Determine the components of the electric field. Ex...Ch. 23 - A nonconducting sphere of radius r2 contains a...Ch. 23 - A thin flat nonconducting disk, with radius R0 and...Ch. 23 - A Geiger counter is used to detect charged...Ch. 23 - A Van de Graaff generator (Fig. 2341) can develop...Ch. 23 - The potential in a region of space is given by V =...Ch. 23 - A charge q1 of mass m rests on the y axis at a...Ch. 23 - (II) A dipole is composed of a 1.0 nC charge at x...Ch. 23 - (II) A thin flat disk of radius R0 carries a total...Ch. 23 - (III) You are trying to determine an unknown...
Additional Science Textbook Solutions
Find more solutions based on key concepts
APPLY 1.2 Express the following quantities in scientific notation
using fundamental SI units of mass and lengt...
Chemistry (7th Edition)
What is the reducing agent in the following reaction?
2 Br –– (aq) + H2 O2 (aq) + 2 H+ (aq) → Br2 (aq) + 2 H2 ...
Chemistry: The Central Science (14th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology (7th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
2. Define equilibrium population. Outline the conditions that must be met for a population to stay in genetic e...
Biology: Life on Earth (11th Edition)
26. A 10 kg crate is placed on a horizontal conveyor belt. The materials are such that and .
a. Draw a free-...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A point charge of q=50108 C is placed at the center of an uncharged spherical conducting shell of inner radius 6.0 cm and outer radius 9.0 cm. Find the electric potential at (a) r = 4,0cm, (b) r = 8.0 cm, (c) r — 12.0 cm.arrow_forwardCheck Your Understanding What are the equipotential surfaces for an infinite line charge?arrow_forwardThe equipotential lines in a region of uniform electric field are indicated by the dashed lines. y(cm) 10 V 25 V 40 V +x(cm) 55 V What is the work done by electric force in moving a 2 nC charge from 25 V to 55V? a) + 55 x 10-⁹ J b) - 25 x 10-⁹ J c) + 60 x 10-⁹ J d) a) - 60 x 10-⁹ J e) None of the answer choices is correct. Write your answer with calculation.arrow_forward
- A charge q1 is located at x = 0 and has a value of 3.48 nC. Another charge q2 is located at x = 0.898 m and has a value of --6.34 nC. Point a is located at y = 0.511 m (right above q1). Point b is located midway betwen the two charges. Calculate the work done to bring an electron from point a to point b in units of electron-Volts (eV). Give your numerical result to three significant figures. Type in the units after your 3-sig-fig numerical answer.arrow_forward(a) How much charge can be placed on a capacitor with air between the plates before it breaks down if the area of each plate is 8.00 cm?? (Assume air has a dielectric strength of 3.00 x 10° v/m and dielectric constant of 1.00.) nC (b) Find the maximum charge if polystyrene is used between the plates instead of air. (Assume polystyrene has a dielectric strength of 24.0 x 10° v/m and dielectric constant of 2.56.) nCarrow_forward(a) How much charge can be placed on a capacitor with air between the plates before it breaks down if the area of each plate is 4.00 cm²? nC (b) Find the maximum charge if polystyrene is used between the plates instead of air. nC Need Harrow_forward
- (II) Determine the direction and magnitude of the electric field at the point P in Fig. 16–56. The charges are separated by a distance 2a, and point P is a distance x from the midpoint between the two charges. Express your answer in terms of Q, x, a, and k. +Q а -Q FIGURE 16–56 Problem 31.arrow_forwardPls asaparrow_forwardThe magnitude of the uniform electric field along the -y-axis is 275 V / m. Coordinates of point A| (-0.1, -0.3) m, if the coordinates of the B point are (0.2, 0.4) m, calculate the potential difference VB-VA. A) 324.6 VB) 287.6 VC) 192.5 VD) 163.2 VE) 235.1 Varrow_forward
- (II) Determine the electric field É at the origin 0 in Fig. 16–58 due to the two charges at A and B. y |+26 µC A 8.0 cm -26 µC B 8.0 cm FIGURE 16-58 8.0 cm Problem 33.arrow_forwardA uniform electric field of magnitude 355 N/C pointing in the positive x-direction acts on an electron, which is initially at rest. The electron has moved 3.30 cm. (a) What is the work done by the field on the electron? (b) What is the change in potential energy associated with the electron? (c) What is the velocity of the electron? magnitude m/s direction -Select- v Need Help? Read Itarrow_forwardi) A uniform electric field of magnitude 375 N/C in the positive x-direction acts on an electron, which is initially at rest. After the electron has moved 3.20 cm, what is the work done by the field on the electron, A) 2.92 × 1018 J B) 1.92 × 1018 J C) 9.92 × 10-18 J D) 1.92 × 10-18 Jarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics Capacitor & Capacitance part 7 (Parallel Plate capacitor) CBSE class 12; Author: LearnoHub - Class 11, 12;https://www.youtube.com/watch?v=JoW6UstbZ7Y;License: Standard YouTube License, CC-BY