Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 39P
A uniformly charged ring of radius 10.0 cm has a total charge of 75.0 μC. Find the electric field on the axis of the ring at (a) 1.00 cm, (b) 5.00 cm, (c) 30.0 cm, and (d) 100 cm from the center of the ring.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A uniformly charged ring of radius 10.0 cm has a total charge of 75.0 μC. Find the electric field on the axis of the ring at (a) 1.00 cm, (b) 5.00 cm, (c) 30.0 cm, and (d) 100 cm from the center of the ring.
A uniformly charged ring of radius 10.0 cm has a total charge of 47.0 μC. Find the electric field on the axis of the ring at the following distances from the center of the ring. (Choose the x-axis to point along the axis of the ring.)
(a) 1.00 cm
(b) 5.00 cm
(c) 30.0 cm
(d) 100 cm
Î MN/C
Î MN/C
Î MN/C
Î MN/C
A uniformly charged ring of radius 10.0 cm has a total charge of 52.0 µC. Find the electric field on the axis of the ring at the following distances from the center of the ring. (Choose the x-axis to point along the axis of the ring.)
(a) 1.00 cm
Î MN/C
(b) 5.00 cm
Î MN/C
(c) 30.0 cm
Î MN/C
(d) 100 cm
Î MN/C
Chapter 23 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 23.1 - Three objects are brought close to each other, two...Ch. 23.2 - Three objects are brought close to one another,...Ch. 23.3 - Object A has a charge of +2 C, and object B has a...Ch. 23.4 - A test charge of +3 C is at a point P where an...Ch. 23.6 - Rank the magnitudes of the electric field at...Ch. 23 - Prob. 1OQCh. 23 - Prob. 2OQCh. 23 - Prob. 3OQCh. 23 - Prob. 4OQCh. 23 - Prob. 5OQ
Ch. 23 - Prob. 6OQCh. 23 - Prob. 7OQCh. 23 - Prob. 8OQCh. 23 - Prob. 9OQCh. 23 - Prob. 10OQCh. 23 - Prob. 11OQCh. 23 - Prob. 12OQCh. 23 - Prob. 13OQCh. 23 - Prob. 14OQCh. 23 - Prob. 15OQCh. 23 - Prob. 1CQCh. 23 - A charged comb often attracts small bits of dry...Ch. 23 - Prob. 3CQCh. 23 - Prob. 4CQCh. 23 - Prob. 5CQCh. 23 - Prob. 6CQCh. 23 - Prob. 7CQCh. 23 - Prob. 8CQCh. 23 - Prob. 9CQCh. 23 - Prob. 10CQCh. 23 - Prob. 11CQCh. 23 - Find to three significant digits the charge and...Ch. 23 - Prob. 2PCh. 23 - Prob. 3PCh. 23 - Prob. 4PCh. 23 - In a thundercloud, there may be electric charges...Ch. 23 - (a) Find the magnitude of the electric force...Ch. 23 - Prob. 7PCh. 23 - Nobel laureate Richard Feynman (19181088) once...Ch. 23 - A 7.50-nC point charge is located 1.80 m from a...Ch. 23 - Prob. 10PCh. 23 - Prob. 11PCh. 23 - Prob. 12PCh. 23 - Prob. 13PCh. 23 - Prob. 14PCh. 23 - Prob. 15PCh. 23 - Prob. 16PCh. 23 - Review. In the Bohr theory of the hydrogen atom,...Ch. 23 - Prob. 18PCh. 23 - Prob. 19PCh. 23 - Prob. 20PCh. 23 - Prob. 21PCh. 23 - Why is the following situation impossible? Two...Ch. 23 - Prob. 23PCh. 23 - Prob. 24PCh. 23 - Prob. 25PCh. 23 - Prob. 26PCh. 23 - Prob. 27PCh. 23 - Prob. 28PCh. 23 - Prob. 29PCh. 23 - Prob. 30PCh. 23 - Prob. 31PCh. 23 - Two charged particles are located on the x axis....Ch. 23 - Prob. 33PCh. 23 - Two 2.00-C point charges are located on the x...Ch. 23 - Prob. 35PCh. 23 - Consider the electric dipole shown in Figure...Ch. 23 - A rod 14.0 cm long is uniformly charged and has a...Ch. 23 - Prob. 38PCh. 23 - A uniformly charged ring of radius 10.0 cm has a...Ch. 23 - The electric field along the axis of a uniformly...Ch. 23 - Prob. 41PCh. 23 - Prob. 42PCh. 23 - A continuous line of charge lies along the x axis,...Ch. 23 - Prob. 44PCh. 23 - Prob. 45PCh. 23 - Prob. 46PCh. 23 - A negatively charged rod of finite length carries...Ch. 23 - Prob. 48PCh. 23 - Prob. 49PCh. 23 - Prob. 50PCh. 23 - A proton accelerates from rest in a uniform...Ch. 23 - Prob. 52PCh. 23 - Prob. 53PCh. 23 - Protons are projected with an initial speed vi =...Ch. 23 - Prob. 55PCh. 23 - Prob. 56PCh. 23 - A proton moves at 4.50 105 m/s in the horizontal...Ch. 23 - Prob. 58APCh. 23 - Consider an infinite number of identical...Ch. 23 - A particle with charge 3.00 nC is at the origin,...Ch. 23 - Prob. 61APCh. 23 - Prob. 62APCh. 23 - Prob. 63APCh. 23 - Prob. 64APCh. 23 - Prob. 65APCh. 23 - Prob. 66APCh. 23 - Prob. 67APCh. 23 - Prob. 68APCh. 23 - Prob. 69APCh. 23 - Two point charges qA = 12.0 C and qB = 45.0 C and...Ch. 23 - Prob. 71APCh. 23 - Prob. 72APCh. 23 - Two small spheres hang in equilibrium at the...Ch. 23 - Prob. 74APCh. 23 - Prob. 75APCh. 23 - Prob. 76APCh. 23 - Prob. 77APCh. 23 - Prob. 78APCh. 23 - Prob. 79APCh. 23 - Prob. 80APCh. 23 - Prob. 81APCh. 23 - Prob. 82APCh. 23 - Prob. 83APCh. 23 - Identical thin rods of length 2a carry equal...Ch. 23 - Prob. 85CPCh. 23 - Prob. 86CPCh. 23 - Prob. 87CPCh. 23 - Prob. 88CPCh. 23 - Prob. 89CPCh. 23 - Prob. 90CPCh. 23 - Two particles, each with charge 52.0 nC, are...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The validity of a scientific law.
The Physical Universe
Is Earths inner core solid and the outer core liquid because the inner core is cooler than the outer core? Expl...
Conceptual Integrated Science
The validity of a scientific law.
Physical Universe
Whether two metal foil leaves an electroscope get opposite charge when the electroscope is charged.
The Physics of Everyday Phenomena
an exact quantity that people agree to use to compare measurements.
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
An aluminum calorimeter with a mass of 100 g contains 250 g of water. The calorimeter and water are in thermal ...
Physics for Scientists and Engineers
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A solid conducting sphere of radius 2.00 cm has a charge 8.00 μC. A conducting spherical shell of inner radius 4.00 cm and outer radius 5.00 cm is concentric with the solid sphere and has a total charge −4.00 μC. Find the electric field at (a) r = 1.00 cm, (b) r = 3.00 cm, (c) r = 4.50 cm, and (d) r = 7.00 cm from the center of this charge configuration.arrow_forwardA uniformly charged ring of radius 10.0 cm has a total charge of 65.0 ?C. Find the electric field on the axis of the ring at the following distances from the center of the ring. (Choose the x-axis to point along the axis of the ring.) (a) 1.00 cm î MN/C (b) 5.00 cm î MN/C (c) 30.0 cm î MN/C (d) 100 cm î MN/Carrow_forwardA uniformly charged ring of radius 10.0 cm has a total charge of 59.0 μC. Find the electric field on the axis of the ring at the following distances from the center of the ring. (Choose the x-axis to point along the axis of the ring.) (a) 1.00 cm 5.30 (b) 5.00 cm 10.60 X What is the general expression for the electric field along the axis of a uniformly charged ring? i MN/C ✓IMN/C (c) 30.0 cm 176.66 x What is the general expression for the electric field along the axis of a uniformly charged ring? I MN/C (d) 100 cm Need Help? i MN/C Read It Master itarrow_forward
- A thin, square, conducting plate 47.0 cm on a side lies in the xy plane. A total charge of 3.50 10-8 C is placed on the plate. You may assume the charge density is uniform. (a) Find the charge density on each face of the plate. C/m2(b) Find the electric field just above the plate. magnitude N/C direction (c) Find the electric field just below the plate. magnitude N/C directionarrow_forwardA circular metal plate of radius 17.2 cm carries a total charge of 1.01 μC and the charge is distributed uniformly over the surface of the plate. Determine the surface charge density on the plate and report your answer in µC/m².arrow_forwardA uniformly charged ring of radius 10.0 cm has a total charge of 46.0 μC. Find the electric field on the axis of the ring at the following distances from the center of the ring. (Choose the x-axis to point along the axis of the ring.) (a) 1.00 cm (b) 5.00 cm (c) 30.0 cm (d) 100 cm Need Help? Î MN/C Î MN/C Î MN/C Î MN/C Read It Master Itarrow_forward
- A charge of −27 μC is distributed uniformly throughout a spherical volume of radius 9.5 cm. Determine the electric field due to this charge at a distance of (a) 2.4 cm, (b) 5.3 cm, and (c) 22 cm from the center of the sphere.arrow_forwardA solid sphere of radius 40.0 cm has a total positive charge of 26.0 μC uniformly distributed throughout its volume. Calculate the magnitude of the electric field (a) 0 cm, (b) 10.0 cm, (c) 40.0 cm, and (d) 60.0 cm from the center of the sphere.arrow_forwardA uniformly charged ring of radius 10.0 cm has a total charge of 89.0 μC. Find the electric field on the axis of the ring at the following distances from the center of the ring. (Choose the x-axis to point along the axis of the ring.) (a) 1.00 cm (b) 5.00 cm (c) 30.0 cm (d) 100 cm Need Help? i MN/C i MN/C i MN/C IMN/C Read II Moster Marrow_forward
- A uniformly charged ring of radius 10.0 cm has a total charge of 86.5 μC. Find the electric field on the axis of the ring at the following distances from the center of the ring. (Choose the x-axis to point along the axis of the ring.) (a) 1.00 cm (b) 5.00 cm (c) 30.0 cm (d) 100 cmarrow_forwardA uniformly charged ring of radius 10.0cm has a total charge of 75.0μC. Find the electric field on the axis of the ring at (a) 1.00cm, (b) 5.00cm, (c) 30.0cm, and (d) 100cm from the center of the ring.arrow_forwardA total charge of 11.0 µC is uniformly distributed on the surface of a thin spherical shell of radius 28.0 cm. What is the magnitude of the electric field at the following distances from the center of the spherical shell? (a) 5.00 cm N/C (b) 44.0 cm N/Carrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY