Concept explainers
(i)
The comparison of the magnitude of electric forces exerted on the two particles.
(i)
Answer to Problem 1OQ
Option (c) They are equal.
Explanation of Solution
Write the equation for electric force.
Here,
Write the equation for the electric field on the free electron.
Here,
Write the equation for the electric field on the free proton.
Conclusion:
Substitute
Substitute
In an identical electric field, the magnitude of electric force exerted on a free electron, and on a free proton is equal.
The magnitude of electric force in free electron and free proton is equal as calculated above, therefore options (a), (b), (d) and (e) are incorrect.
Therefore, option (c) is correct.
(ii)
The comparison of magnitudes of their acceleration.
(ii)
Answer to Problem 1OQ
Option (b) It is thousands of times greater for the electron.
Explanation of Solution
Write the equation for acceleration.
Here,
Particle's acceleration is inversely proportional to the mass of the particle.
Acceleration of free electron is inversely proportional to the mass of the free electron.
Acceleration of free proton is inversely proportional to the mass of the free proton.
Conclusion:
Substitute
Substitute
Divide equation (V) and (VI).
Mass of free proton is thousand times greater than the mass of the free electron, so the acceleration of free electron will be thousand times greater than the acceleration for free proton, as shown in equation (V), (VI) and (VII).
The acceleration of free electron will be a thousand times greater than the acceleration for free proton, therefore options (a), (c), (d) and (e) are incorrect.
Therefore, option (b) is correct.
Want to see more full solutions like this?
Chapter 23 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- A proton and an alpha particle (charge = 2e, mass = 6.64 1027 kg) are initially at rest, separated by 4.00 1015 m. (a) If they are both released simultaneously, explain why you cant find their velocities at infinity using only conservation of energy. (b) What other conservation law can be applied in this case? (c) Find the speeds of the proton and alpha particle, respectively, at infinity.arrow_forwardLightning can be studied with a Van de Graaff generator, which consists of a spherical dome on which charge is continuously deposited by a moving belt. Charge can be added until the electric field at the surface of the dome becomes equal to the dielectric strength of air. Any more charge leaks off in sparks as shown in Figure P25.52. Assume the dome has a diameter of 30.0 cm and is surrounded by dry air with a "breakdown" electric field of 3.00 106 V/m. (a) What is the maximum potential of the dome? (b) What is the maximum charge on the dome?arrow_forwardA proton is fired from very far away directly at a fixed particle with charge q = 1.28 1018 C. If the initial speed of the proton is 2.4 105 m/s, what is its distance of closest approach to the fixed particle? The mass of a proton is 1.67 1027 kg.arrow_forward
- A point charge of 4.00 nC is located at (0, 1.00) m. What is the x component of the electric field due to the point charge at (4.00, 2.00) m? (a) 1.15 N/C (b) 0.864 N/C (c) 1.44 N/C (d) 1.15 N/C (e) 0.864 N/Carrow_forwardThis afternoon, you have a physics symposium class, and you are the presenter. You will be presenting a topic to physics majors and faculty. You have been so busy that you have not had time to prepare and you dont even have an idea for a topic. You are frantically reading your physics textbook looking for an idea. In your reading, you have learned that the Earth carries a charge on its surface of about 105 C, which results in electric fields in the atmosphere. This gets you very excited about a new theory. Suppose the Moon also carries a charge on the order of 105 C, with the opposite sign! Maybe the orbit of the Moon around the Earth is due to electrical attraction between the Moon and the Earth! Theres an idea for your symposium presentation! You quickly jot down a few notes and run off to your symposium. While you are speaking, you notice one of the professors doing some calculations on a scrap of paper. Uh-oh! He has just raised his hand with a question. Why are you embarrassed?arrow_forwardThree charged particles are arranged on corners of a square as shown in Figure OQ19.14, with charge Q on both the particle at the upper left corner and the particle at the lower right corner and with charge +2Q on the particle at the lower left corner. (i) What is the direction of the electric field at the upper right corner, which is a point in empty space? (a) It is upward and to the right. (b) It is straight to the right. (c) It is straight downward. (d) It is downward and to the left. (e) It is perpendicular to the plane of the picture and outward. (ii) Suppose the +2 Q charge at the lower left corner is removed. Then does the magnitude of the field at the upper right corner (a) become larger, (b) become smaller, (c) stay the same, or (d) change unpredictably? Figure OQ19.14arrow_forward
- A very small ball has a mass of 5.00 103 kg and a charge of 4.00 C. What magnitude electric field directed upward will balance the weight of the ball so that the ball is suspended motionless above the ground? (a) 8.21 102 N/C (b) 1.22 104 N/C (c) 2.00 102 N/C (d) 5.11 106 N/C (e) 3.72 103 N/Carrow_forwardAssume the charged objects in Figure OQ19.15 are fixed. Notice that there is no sight line from the location of q2 to the location of q1. If you were at q1, you would be unable to see q2 because it is behind q3. How would you calculate the electric force exerted on the object with charge q1? (a) Find only the force exerted by q2 on charge q1. (b) Find only the force exerted by q3 on charge q1. (c) Add the force that q2 would exert by itself on charge q1 to the force that q3 would exert by itself on charge q1. (d) Add the force that q3 would exert by itself to a certain fraction of the force that q2 would exert by itself. (e) There is no definite way to find the force on charge q1. Figure OQ19.15arrow_forwardYou are working as an expert witness for an inventor. The inventor devised a system that allows an 85.0-kg human to hover above the ground at the surface of the Earth due to the repulsive force between a charge q applied to his body and the normal electric charge on the Earth. The normal charge on the Earth is such that the electric field is uniform from near the Earths surface, directed downward toward the surface, and is of magnitude 130 N/C at the location of the engineers experiments. Everything went well until the engineer tried a new experiment. He attempted to transfer the same amount of charge q to each of two experimental subjects standing next to each other, so they could hover and work close together on a task. The charged, hovering experimental subjects repelled each other and were injured as they flew away in opposite directions. Both experimental subjects are now suing the inventor for their injuries. The inventor is claiming that it is not his fault if the subjects find each other repulsive. To find out whether the inventor has a good defense, determine the initial acceleration of each subject if they are working 1.00 m apart.arrow_forward
- Consider the electric dipole shown in Figure P19.20. Show that the electric field at a distant point on the + x axis is Ex 4 keqa/x3.arrow_forwardA particle with charge q on the negative x axis and a second particle with charge 2q on the positive x axis are each a distance d from the origin. Where should a third particle with charge 3q be placed so that the magnitude of the electric field at the origin is zero?arrow_forwardAn electron with a speed of 3.00 106 m/s moves into a uniform electric field of magnitude 1.00 103 N/C. The field lines are parallel to the electrons velocity and pointing in the same direction as the velocity. How far does the electron travel before it is brought to rest? (a) 2.56 cm (b) 5.12 cm (c) 11.2 cm (d) 3.34 m (e) 4.24 marrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning