(a)
Interpretation:
Whether C2H6forms an addition or
Concept Introduction:
A polymer is a long chain molecule made of large number of monomer units. The monomer is repeating units of a polymer that are linked to each other to produce a molecule of polymer.
These monomer units are linked to each other either through the formation of peptide linkage or glycosidic linkage or by removal of any moiety such as a water molecule.
Polyvinyl chloride, Bakelite and polystyrene are some of the example of
(b)
Interpretation:
Whether C2H4forms an addition or condensation polymer needs to be determined.
Concept Introduction:
A polymer is a long chain molecule made of large number of monomer units. The monomer is repeating units of a polymer that are linked to each other to produce a molecule of polymer.
These monomer units are linked to each other either through the formation of peptide linkage or glycosidic linkage or by removal of any moiety such as a water molecule.
Polyvinyl chloride, Bakelite and polystyrene are some of the example of polymers.
(c)
Interpretation:
Whether OH-CH2- CH2-OH forms an addition or condensation polymer needs to be determined.
Concept Introduction:
A polymer is a long chain molecule made of large number of monomer units. The monomer is repeating units of a polymer that are linked to each other to produce a molecule of polymer.
These monomer units are linked to each other either through the formation of peptide linkage or glycosidic linkage or by removal of any moiety such as a water molecule.
Polyvinyl chloride, Bakelite and polystyrene are some of the example of polymers.
(d)
Interpretation:
Whether OH-CH2- CH3 forms an addition or condensation polymer needs to be determined.
Concept Introduction:
A polymer is a long chain molecule made of large number of monomer units. The monomer is repeating units of a polymer that are linked to each other to produce a molecule of polymer.
These monomer units are linked to each other either through the formation of peptide linkage or glycosidic linkage or by removal of any moiety such as a water molecule.
Polyvinyl chloride, Bakelite and polystyrene are some of the example of polymers.
Want to see the full answer?
Check out a sample textbook solutionChapter 23 Solutions
Student Solutions Manual For Masterton/hurley's Chemistry: Principles And Reactions, 8th
- Part II. Identify whether the two protons in blue are homotopic, enantiopic, diasteriotopic, or heterotopic. a) HO b) Bri H HH c) d) H H H Br 0arrow_forwardNonearrow_forwardChoose the option that is decreasing from biggest to smallest. Group of answer choices: 100 m, 10000 mm, 100 cm, 100000 um, 10000000 nm 10000000 nm, 100000 um, 100 cm, 10000 mm, 100 m 10000000 nm, 100000 um, 10000 mm, 100 cm, 100 m 100 m, 100 cm, 10000 mm, 100000 um, 10000000 nmarrow_forward
- Q1. (a) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH3. Use curved arrows to show the electron movement. (b) Draw equations for homolytic and heterolytic cleavages of the N-H bond in NH4*. Use curved arrows to show the electron movement.arrow_forwardWhich is NOT the typical size of a bacteria? 1000 nm 0.001 mm 0.01 mm 1 umarrow_forwardNonearrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning