Determining the Size of the Nucleus. When radium-226 decays radioactively, it emits an alpha particle (the nucleus of helium), and the end product is radon-222. We can model this decay by thinking of the radium-226 as consisting of an alpha particle emitted from the surface of the spherically symmetric radon-222 nucleus, and we can treat the alpha particle as a point charge. The energy of the alpha particle has been measured in the laboratory and has been found to be 4.79 MeV when the alpha particle is essentially infinitely far from the nucleus. Since radon is much heavier than the alpha particle, we can assume that there is no appreciable recoil of the radon after the decay. The radon nucleus contains 86 protons, while the alpha particle has 2 protons and the radium nucleus has 88 protons, (a) What was the electric potential energy of the alpha–radon combination just before the decay, in MeV and in joules? (b) Use your result from part (a) to calculate the radius of the radon nucleus.
Determining the Size of the Nucleus. When radium-226 decays radioactively, it emits an alpha particle (the nucleus of helium), and the end product is radon-222. We can model this decay by thinking of the radium-226 as consisting of an alpha particle emitted from the surface of the spherically symmetric radon-222 nucleus, and we can treat the alpha particle as a point charge. The energy of the alpha particle has been measured in the laboratory and has been found to be 4.79 MeV when the alpha particle is essentially infinitely far from the nucleus. Since radon is much heavier than the alpha particle, we can assume that there is no appreciable recoil of the radon after the decay. The radon nucleus contains 86 protons, while the alpha particle has 2 protons and the radium nucleus has 88 protons, (a) What was the electric potential energy of the alpha–radon combination just before the decay, in MeV and in joules? (b) Use your result from part (a) to calculate the radius of the radon nucleus.
Determining the Size of the Nucleus. When radium-226 decays radioactively, it emits an alpha particle (the nucleus of helium), and the end product is radon-222. We can model this decay by thinking of the radium-226 as consisting of an alpha particle emitted from the surface of the spherically symmetric radon-222 nucleus, and we can treat the alpha particle as a point charge. The energy of the alpha particle has been measured in the laboratory and has been found to be 4.79 MeV when the alpha particle is essentially infinitely far from the nucleus. Since radon is much heavier than the alpha particle, we can assume that there is no appreciable recoil of the radon after the decay. The radon nucleus contains 86 protons, while the alpha particle has 2 protons and the radium nucleus has 88 protons, (a) What was the electric potential energy of the alpha–radon combination just before the decay, in MeV and in joules? (b) Use your result from part (a) to calculate the radius of the radon nucleus.
the cable may break and cause severe injury.
cable is more likely to break as compared to the
[1]
ds, inclined at angles of 30° and 50° to the vertical
rings by way of a scaled diagram. [4]
I
30°
T₁
3cm
3.8T2
cm
200 N
50°
at it is headed due North and its airspeed indicat
240 km/h. If there is a wind of 100 km/h from We
e relative to the Earth? [3]
Can you explain this using nodal analysis
With the nodes I have present
And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sources
state the difference between vector and scalar qu
Chapter 23 Solutions
University Physics with Modern Physics (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.