Electrostatic precipitators use electric forces to remove pollutant particles from smoke, in particular in the smokestacks of coal-burning power plants. One form of precipitator consists of a vertical, hollow, metal cylinder with it thin wire, insulated front the cylinder, running along its axis ( Fig. P23.65 ). A large potential difference is established between the wire and the outer cylinder, with the wire at lower potential. This sets up a strong radial electric field directed inward. The field produces a region of ionized air near the wire. Smoke enters the precipitator at the bottom, ash and dust in it pick up electrons, and the charged pollutants are accelerated toward the outer cylinder wall by the electric field. Suppose the radius of the central wire is 90.0 μ m, the radius of live cylinder is 14.0 cm, and a potential difference of 50.0 kV is established between the wire and the cylinder. Also assume that the wire and cylinder are both very long in comparison to the cylinder radius, so the results Of Problem 23.61 apply, (a) What is the magnitude of the electric field midway between the wire and the cylinder wall? (b) What magnitude of charge must a 30.0- μg ash particle have if the electric field computed in part (a) is to exert a force ten times the weight of the particle? Figure P23.65
Electrostatic precipitators use electric forces to remove pollutant particles from smoke, in particular in the smokestacks of coal-burning power plants. One form of precipitator consists of a vertical, hollow, metal cylinder with it thin wire, insulated front the cylinder, running along its axis ( Fig. P23.65 ). A large potential difference is established between the wire and the outer cylinder, with the wire at lower potential. This sets up a strong radial electric field directed inward. The field produces a region of ionized air near the wire. Smoke enters the precipitator at the bottom, ash and dust in it pick up electrons, and the charged pollutants are accelerated toward the outer cylinder wall by the electric field. Suppose the radius of the central wire is 90.0 μ m, the radius of live cylinder is 14.0 cm, and a potential difference of 50.0 kV is established between the wire and the cylinder. Also assume that the wire and cylinder are both very long in comparison to the cylinder radius, so the results Of Problem 23.61 apply, (a) What is the magnitude of the electric field midway between the wire and the cylinder wall? (b) What magnitude of charge must a 30.0- μg ash particle have if the electric field computed in part (a) is to exert a force ten times the weight of the particle? Figure P23.65
Electrostatic precipitators use electric forces to remove pollutant particles from smoke, in particular in the smokestacks of coal-burning power plants. One form of precipitator consists of a vertical, hollow, metal cylinder with it thin wire, insulated front the cylinder, running along its axis (Fig. P23.65). A large potential difference is established between the wire and the outer cylinder, with the wire at lower potential. This sets up a strong radial electric field directed inward. The field produces a region of ionized air near the wire. Smoke enters the precipitator at the bottom, ash and dust in it pick up electrons, and the charged pollutants are accelerated toward the outer cylinder wall by the electric field. Suppose the radius of the central wire is 90.0 μm, the radius of live cylinder is 14.0 cm, and a potential difference of 50.0 kV is established between the wire and the cylinder. Also assume that the wire and cylinder are both very long in comparison to the cylinder radius, so the results Of Problem 23.61 apply, (a) What is the magnitude of the electric field midway between the wire and the cylinder wall? (b) What magnitude of charge must a 30.0-μg ash particle have if the electric field computed in part (a) is to exert a force ten times the weight of the particle?
The figure gives the acceleration a versus time t for a particle moving along an x axis. The a-axis scale is set by as = 12.0 m/s². At t = -2.0
s, the particle's velocity is 11.0 m/s. What is its velocity at t = 6.0 s?
a (m/s²)
as
-2
0
2
t(s)
4
Two solid cylindrical rods AB and BC are welded together at B and loaded as shown. Knowing that the average normal stress must not
exceed 150 MPa in either rod, determine the smallest allowable values of the diameters d₁ and d2. Take P= 85 kN.
P
125 kN
B
125 kN
C
0.9 m
1.2 m
The smallest allowable value of the diameter d₁ is
The smallest allowable value of the diameter d₂ is
mm.
mm.
Westros, from Game of Thrones, has an area of approximately 6.73⋅106 miles26.73⋅106miles2. Convert the area of Westros to km2 where 1.00 mile = 1.609 km.
Chapter 23 Solutions
University Physics with Modern Physics (14th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.