University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 23.48P
A positive point charge q1 = +5.00 × 10−4 C is held at a fixed position. A small object with mass 4.00 × 10−3 kg and charge q2 = −3.00 × 10−4 C is projected directly at q1. Ignore gravity. When q2 is 0.400 m away, its speed is 800 m/s. What is its speed when it is 0.200 m from q1?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 23 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 23.1 - Consider the system of three point charges in...Ch. 23.2 - If the electric potential at a certain point is...Ch. 23.3 - If the electric field at a certain point is zero,...Ch. 23.4 - Would the shapes of the equipotential surfaces in...Ch. 23.5 - In a certain region of space the potential is...Ch. 23 - A student asked. Since electrical potential is...Ch. 23 - The potential (relative to a point at infinity)...Ch. 23 - Is it possible to have an arrangement of two point...Ch. 23 - Since potential can have any value you want...Ch. 23 - If E is zero everywhere along a certain path that...
Ch. 23 - If E is zero throughout a certain region of space,...Ch. 23 - Which way do electric field lines point, from high...Ch. 23 - (a) If the potential (relative to infinity) is...Ch. 23 - If you carry out the integral of the electric...Ch. 23 - The potential difference between the two terminals...Ch. 23 - It is easy to produce a potential difference of...Ch. 23 - If the electric potential at a single point is...Ch. 23 - Because electric field lines and equipotential...Ch. 23 - A uniform electric field is directed due east....Ch. 23 - We often say that if point A is at a higher...Ch. 23 - A conducting sphere is to be charged by bringing...Ch. 23 - In electronics it is customary to define the...Ch. 23 - A conducting sphere is placed between two charged...Ch. 23 - A conductor that carries a net charge Q has a...Ch. 23 - A high-voltage dc power line falls on a car, so...Ch. 23 - When a thunderstorm is approaching, sailors at sea...Ch. 23 - A positive point charge is placed near a very...Ch. 23 - A point charge q1 = +2.40 C is held stationary at...Ch. 23 - A point charge q1 is held stationary at the...Ch. 23 - Energy of the Nucleus. How much work is needed to...Ch. 23 - (a) How much work would it take to push two...Ch. 23 - A small metal sphere, carrying a net charge of q1...Ch. 23 - BIO Energy of DNA Base Pairing. (See Exercise...Ch. 23 - Two protons, starting several meters apart, are...Ch. 23 - Three equal 1.20-C point charges are placed at the...Ch. 23 - Two protons are released from rest when they are...Ch. 23 - Four electrons are located at the corners of a...Ch. 23 - Three point charges, which initially are...Ch. 23 - An object with charge q = 6.00 109 C is placed in...Ch. 23 - A small particle has charge 5.00 C and mass 2.00 ...Ch. 23 - A particle with charge +4.20 nC is in a uniform...Ch. 23 - A charge of 28.0 nC is placed in a uniform...Ch. 23 - Two stationary point charges +3.00 nC and +2.00 nC...Ch. 23 - Point charges q1 = + 2.00 C and q2 = 2.00 C are...Ch. 23 - Two point charges of equal magnitude Q are held a...Ch. 23 - Two point charges q1 = +2.40 nC and q2 = 6.50 nC...Ch. 23 - (a) An electron is to be accelerated from 3.00 ...Ch. 23 - A positive charge q is fixed at the point x = 0, y...Ch. 23 - At a certain distance from a point charge, the...Ch. 23 - A uniform electric field has magnitude E and is...Ch. 23 - For each of the following arrangements of two...Ch. 23 - A thin spherical shell with radius R1 = 3.00 cm is...Ch. 23 - A total electric charge of 3.50 nC is distributed...Ch. 23 - A uniformly charged, thin ring has radius 15.0 cm...Ch. 23 - A solid conducting sphere has net positive charge...Ch. 23 - Charge Q = 5.00 C is distributed uniformly over...Ch. 23 - An infinitely long line of charge has linear...Ch. 23 - A very long wire carries a uniform linear charge...Ch. 23 - A very long insulating cylinder of charge of...Ch. 23 - A very long insulating cylindrical shell of radius...Ch. 23 - A ring of diameter 8.00 cm is fixed in place and...Ch. 23 - A very small sphere with positive charge q = +...Ch. 23 - CP Two large, parallel conducting plates carrying...Ch. 23 - Two large, parallel, metal plates carry opposite...Ch. 23 - BIO Electrical Sensitivity of Sharks. Certain...Ch. 23 - The electric field at the surface of a charged,...Ch. 23 - (a) How much excess charge must be placed on a...Ch. 23 - CALC A metal sphere with radius ra is supported on...Ch. 23 - A very large plastic sheet carries a uniform...Ch. 23 - CALC In a certain region of space, the electric...Ch. 23 - CALC In a certain region of space the electric...Ch. 23 - A metal sphere with radius ra = 1.20 cm is...Ch. 23 - CP A point charge q1, = +5.00 C is held fixed in...Ch. 23 - A point charge q1 = 4.00 nC is placed at the...Ch. 23 - A positive point charge q1 = +5.00 104 C is held...Ch. 23 - A gold nucleus has a radius of 7.3 1015 m and a...Ch. 23 - A small sphere with mass 5.00 107 kg and charge...Ch. 23 - Determining the Size of the Nucleus. When...Ch. 23 - CP A proton and an alpha particle are released...Ch. 23 - A particle with charge +7.60 nC is in a uniform...Ch. 23 - Identical charges q = +5.00 C are placed at...Ch. 23 - CALC A vacuum tube diode consists of concentric...Ch. 23 - Two oppositely charged, identical insulating...Ch. 23 - An Ionic Crystal. Figure P23.57 shows eight point...Ch. 23 - (a) Calculate the potential energy of a system of...Ch. 23 - CP A small sphere with mass 1.50 g hangs by a...Ch. 23 - Two spherical shells have a common center. The...Ch. 23 - CALC Coaxial Cylinders. A long metal cylinder with...Ch. 23 - A Geiger counter detects radiation such as alpha...Ch. 23 - CP Deflection in a CRT. Cathode-ray tubes (CRTs)...Ch. 23 - CP Deflecting Plates of an Oscilloscope. The...Ch. 23 - Electrostatic precipitators use electric forces to...Ch. 23 - CALC A disk with radius R has uniform surface...Ch. 23 - CALC Self-Energy of a Sphere of Charge. A solid...Ch. 23 - CALC A thin insulating rod is bent into a...Ch. 23 - Charge Q = +4.00 C is distributed uniformly over...Ch. 23 - An insulating spherical shell with inner radius...Ch. 23 - CP Two plastic spheres, each carrying charge...Ch. 23 - (a) If a spherical raindrop of radius 0.650 mm...Ch. 23 - CALC Electric charge is distributed uniformly...Ch. 23 - An alpha particle with kinetic energy 9.50 MeV...Ch. 23 - Two metal spheres of different sizes are charged...Ch. 23 - A metal sphere with radius R1 has a charge Q1....Ch. 23 - Prob. 23.77PCh. 23 - CALC The electric potential V in a region of space...Ch. 23 - DATA The electric potential in a region that is...Ch. 23 - DATA A small, stationary sphere carries a net...Ch. 23 - DATA The Millikan Oil-Drop Experiment. The charge...Ch. 23 - CALC A hollow, thin-walled insulating cylinder of...Ch. 23 - CP In experiments in which atomic nuclei collide,...Ch. 23 - For a particular experiment, helium ions are to be...Ch. 23 - A helium ion (He++) that comes within about 10 fm...Ch. 23 - The maximum voltage at the center of a typical...
Additional Science Textbook Solutions
Find more solutions based on key concepts
24.(I) A light plane must reach a speed of 35 m/s for takeoff. How long a runway is needed if the (constant) ac...
Physics: Principles with Applications
Which of the following best describes the phenomenon responsible for ordinary magnets? (a) high concentrations ...
Essential University Physics: Volume 2 (3rd Edition)
ThrustSSC, the worlds first supersonic car, accelerates from rest to 1000 km/h in 16 s. Whats its acceleration?
Essential University Physics: Volume 1 (3rd Edition)
What is the role of “loose” electrons in heat conductors?
Conceptual Physics (12th Edition)
A 4.0-kg particle moving along the x -axis is acted upon by the force whose functional form appears below. The ...
University Physics Volume 1
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A point charge of 4.00 nC is located at (0, 1.00) m. What is the x component of the electric field due to the point charge at (4.00, 2.00) m? (a) 1.15 N/C (b) 0.864 N/C (c) 1.44 N/C (d) 1.15 N/C (e) 0.864 N/Carrow_forwardFour charged particles are at rest at the corners of a square (Fig. P26.14). The net charges are q1 = q2 = +2.65 C and q3 = q4 = 5.15 C. The distance between particle 1 and particle 3 is r13 = 1.75 cm. a. What is the electric potential energy of the four-particle system? b. If the particles are released from rest, what will happen to the system? In particular, what will happen to the systems kinetic energy?arrow_forwardA Two positively charged particles, each with charge Q, are held at positions (a, 0) and (a, 0) as shown in Figure P23.73. A third positively charged particle with charge q is placed at (0, h). a. Find an expression for the net electric force on the third particle with charge q. b. Show that the two charges Q behave like a single charge 2Q located at the origin when the distance h is much greater than a. Figure P23.73 Problems 73 and 74.arrow_forward
- An electron with a speed of 3.00 106 m/s moves into a uniform electric field of magnitude 1.00 103 N/C. The field lines are parallel to the electrons velocity and pointing in the same direction as the velocity. How far does the electron travel before it is brought to rest? (a) 2.56 cm (b) 5.12 cm (c) 11.2 cm (d) 3.34 m (e) 4.24 marrow_forwardA proton is fired from very far away directly at a fixed particle with charge q = 1.28 1018 C. If the initial speed of the proton is 2.4 105 m/s, what is its distance of closest approach to the fixed particle? The mass of a proton is 1.67 1027 kg.arrow_forwardA proton and an alpha particle (charge = 2e, mass = 6.64 1027 kg) are initially at rest, separated by 4.00 1015 m. (a) If they are both released simultaneously, explain why you cant find their velocities at infinity using only conservation of energy. (b) What other conservation law can be applied in this case? (c) Find the speeds of the proton and alpha particle, respectively, at infinity.arrow_forward
- Two small beads having positive charges q1 = 3q and q2 = q are fixed at the opposite ends of a horizontal insulating rod of length d = 1.50 m. The bead with charge q1 is at the origin. As shown in Figure P19.7, a third small, charged bead is free to slide on the rod. (a) At what position x is the third bead in equilibrium? (b) Can the equilibrium be stable?arrow_forward(a) What is the electric field 5.00 m from the center of the terminal of a Van de Graaff with a 3.00 mC charge, noting that the field is equivalent to that of a point charge at the center of the terminal? (b) At this distance, what force does the field exert on a 2.00 C charge on the Van de Graaff’s belt?arrow_forwardA Figure P23.65 shows two identical conducting spheres, each with charge q, suspended from light strings of length L. If the equilibrium angle the strings make with the vertical is , what is the mass m of the spheres? Figure P23.65arrow_forward
- Four charged particles are at rest at the corners of a square (Fig. P26.14). The net charges are q1 = q2 = 2.65 C and q3 = q4 = 5.15 C. The distance between particle 1 and particle 3 is r13 = 1.75 cm. a. What is the electric potential energy of the four-particle system? b. If the particles are released from rest, what will happen to the system? In particular, what will happen to the systems kinetic energy as their separations become infinite? FIGURE P26.14 Problems 14, 15, and 16.arrow_forwardReview. Two insulating spheres have radii 0.300 cm and 0.500 cm, masses 0.100 kg and 0.700 kg, and uniformly distributed charges 2.00 C and 3.00 C. They are released from rest when their centers are separated by 1.00 m. (a) How fast will each be moving when they collide? (b) What If? If the spheres were conductors, would the speeds be greater or less than those calculated in part (a)? Explain.arrow_forwardParticle A of charge 3.00 104 C is at the origin, particle B of charge 6.00 101 C is at (4.00 m, 0), and particle C of charge 1.00 104 C is at (0, 3.00 in). We wish to find the net electric force on C. (a) What is the x component of the electric force exerted by A on C? (b) What is the y component of the force exerted by A on C? (c) Kind the magnitude of the force exerted by B on C. (d) Calculate the x component of the force exerted by B on C. (e) Calculate the y component of the force exerted by B on C. (f) Sum the two x components from parts (a) and (d) to obtain the resultant x component of the electric force acting on C. (g) Similarly, find the y component of the resultant force vector acting on C. (h) Kind the magnitude and direction of the resultant electric force acting on C.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY