Bundle: Chemistry for Today: General, Organic, and Biochemistry, Loose-Leaf Version, 9th + LMS Integrated OWLv2, 4 terms (24 months) Printed Access Card
9th Edition
ISBN: 9781337598255
Author: Spencer L. Seager
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 23, Problem 23.19E
Interpretation Introduction
Interpretation:
The way by which the formation of lactate allows glycolysis to continue under anaerobic conditions is to be explained.
Concept introduction:
Lactate is the conjugate base of lactic acid. Lactic acid is the organic acid that is soluble in water. It is produced under the anaerobic condition. The high amount of lactate in blood indicates the lack of oxygen.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Why is the conversion of lactic acid from the blood into glucose in the liver in an organism’s best interest?
What is meant by:
1. Fermentation
2. Enzymes
Why does Glycolysis only release a small amount of the total available energy that can be harvested from glucose?
Chapter 23 Solutions
Bundle: Chemistry for Today: General, Organic, and Biochemistry, Loose-Leaf Version, 9th + LMS Integrated OWLv2, 4 terms (24 months) Printed Access Card
Ch. 23 - Why is glucose considered the pivotal compound in...Ch. 23 - Prob. 23.2ECh. 23 - Prob. 23.3ECh. 23 - Describe what is meant by the terms blood sugar...Ch. 23 - What range of concentrations for glucose in blood...Ch. 23 - Prob. 23.6ECh. 23 - Prob. 23.7ECh. 23 - Prob. 23.8ECh. 23 - Prob. 23.9ECh. 23 - Prob. 23.10E
Ch. 23 - Prob. 23.11ECh. 23 - Prob. 23.12ECh. 23 - Prob. 23.13ECh. 23 - Prob. 23.14ECh. 23 - Prob. 23.15ECh. 23 - Prob. 23.16ECh. 23 - Prob. 23.17ECh. 23 - Prob. 23.18ECh. 23 - Prob. 23.19ECh. 23 - Prob. 23.20ECh. 23 - Prob. 23.21ECh. 23 - Prob. 23.22ECh. 23 - Prob. 23.23ECh. 23 - Prob. 23.24ECh. 23 - Prob. 23.25ECh. 23 - Prob. 23.26ECh. 23 - Prob. 23.27ECh. 23 - Prob. 23.28ECh. 23 - Prob. 23.29ECh. 23 - Prob. 23.30ECh. 23 - Prob. 23.31ECh. 23 - Prob. 23.32ECh. 23 - Prob. 23.33ECh. 23 - Prob. 23.34ECh. 23 - Prob. 23.35ECh. 23 - Prob. 23.36ECh. 23 - Prob. 23.37ECh. 23 - Prob. 23.38ECh. 23 - Prob. 23.39ECh. 23 - Prob. 23.40ECh. 23 - Prob. 23.41ECh. 23 - Prob. 23.42ECh. 23 - Prob. 23.43ECh. 23 - Prob. 23.44ECh. 23 - Prob. 23.45ECh. 23 - Prob. 23.46ECh. 23 - Prob. 23.47ECh. 23 - Prob. 23.48ECh. 23 - Prob. 23.49ECh. 23 - Prob. 23.50ECh. 23 - Prob. 23.51ECh. 23 - Prob. 23.52ECh. 23 - Prob. 23.53ECh. 23 - Prob. 23.54ECh. 23 - Prob. 23.55ECh. 23 - Prob. 23.56ECh. 23 - Prob. 23.57ECh. 23 - Prob. 23.58ECh. 23 - Prob. 23.59ECh. 23 - Prob. 23.60ECh. 23 - Prob. 23.61ECh. 23 - Prob. 23.62ECh. 23 - Prob. 23.63ECh. 23 - Prob. 23.64ECh. 23 - Prob. 23.65ECh. 23 - Lactate dehydrogenase catalyzes the following...Ch. 23 - Prob. 23.67ECh. 23 - Prob. 23.68ECh. 23 - Prob. 23.69ECh. 23 - Prob. 23.70ECh. 23 - A friend started to make wine by adding yeast to...Ch. 23 - Prob. 23.72ECh. 23 - Explain why monitoring blood lactate levels might...Ch. 23 - Prob. 23.74ECh. 23 - Prob. 23.75ECh. 23 - Prob. 23.76ECh. 23 - Prob. 23.77ECh. 23 - Prob. 23.78ECh. 23 - Prob. 23.79ECh. 23 - Prob. 23.80ECh. 23 - Prob. 23.81ECh. 23 - Prob. 23.82ECh. 23 - Prob. 23.83ECh. 23 - Prob. 23.84ECh. 23 - Prob. 23.85ECh. 23 - Prob. 23.86ECh. 23 - Prob. 23.87ECh. 23 - Prob. 23.88ECh. 23 - Prob. 23.89ECh. 23 - Prob. 23.90E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- What range of concentrations for glucose in blood is considered a normal fasting level?arrow_forwardExplain why monitoring blood lactate levels might be a useful technique to gauge the amount of conditioning in an Olympic runner.arrow_forwardTrypanosomes living in the bloodstream obtain all their free energy from glycolysis. They take up glucose from the host’s blood and excrete pyruvate as a waste product. In this part of their life cycle, trypanosomes do not carry out any oxidative phosphorylation, but they do use another oxygen-dependent pathway, which is absent in mammals, to oxidize NADH. Would this pathway be necessary if the trypanosome excreted lactate rather than pyruvate? Explain.arrow_forward
- 2. Why do enzymes become inactive at very low temperature? Why do enzymes become inactive at very high temperatures? (Hint: It is NOT the same reason.)arrow_forwardExplain the inputs and outputs of glycolysis, fermentation and the Krebs cycle, and state how many enzymes are involved in each process.arrow_forwardFind out the role and chemical reactions of the following reagents in the blood glucose level determination by glucose oxidase method. a) Sodium sulphate – Zinc sulphate solution b ) Glucose oxidase reagent c) Peroxidasearrow_forward
- Describe the energy output, initial substrates, and end products of the glycolysis process.arrow_forwardAnaerobic glycolysis (i.e., lactic acid fermentation) produces pyruvate that is then converted to lactate through the activity of lactate dehydrogenase. The conversion of pyruvate to lactate would seem to be an unnecessary step, since this process does not result in any further release of energy. Explain the necessity for the production of lactate as the endpoint for anaerobic glycolysis.arrow_forwardDescribeenergy consumed vs released in reactions. Differentiate between endergonic vs exergonic reactions, anabolism vs catabolism, and coupled reactions.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Organic And Biological Chemistry
Chemistry
ISBN:9781305081079
Author:STOKER, H. Stephen (howard Stephen)
Publisher:Cengage Learning,
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning