![Physical Science](https://www.bartleby.com/isbn_cover_images/9780077862626/9780077862626_largeCoverImage.gif)
Concept explainers
Condensation of water vapor into clouds or fog requires
a. high temperatures.
b. storms.
c. condensation nuclei.
d. no wind.
![Check Mark](/static/check-mark.png)
Condensation of water vapor into fog or clouds requires:
high temperatures.
storms.
condensation nuclei.
no wind.
Answer to Problem 1AC
Solution:
Option (c) is correct.
Explanation of Solution
Introduction:
The transformation of water vapor into water is called condensation which is happened generally in the absence of temperature or close to the dew point. It depends upon the relative humidity of the air.
Explanation:
Reason for the correct option:
From the theory of condensation it is clear that the water vapor turns into water when it has no longer the capacity to hold the water droplets. The condition can reach at very low temperature or when the temperature is close to dew point. The dew point is the minimum temperature below which the condense can begin and dew can form.
Now the condensation begins at saturation point when it ceases the capacity of holding the water vapours, then the excess water vapours condenses into liquid form. Condensation requires small particles to absorb this water to form the condensation nuclei. If there are no condensation nuclei prasent then water vapor will condens to tiny droplets which will soon torn apart by collisions with other water vapor molecules. Thus, condensation nuclei are required for condensation process.
Hence, option (c) is correct.
Reason for the incorrect options:
Option (a) is incorrect because if the temperature is high then the condensation cannot take place. This is because it will hold the water vapors and the ability will be more with increase in the temperature. Thus condensation will not occur.
Option (b) is incorrect because in this case of storm the air is disturbed. But for the condensation to take place it must be in free, calm air. Any disturbance would cause the dust or the small particles to move which will not lead to condensation.
Option (d) is incorrect because if there is no wind then the small particles will be missed. Condensation must take place with the combination of absorption of excess water vapors by the small particles. If there is no wind, then condensation cannot take place.
Hence, options (a), (b) and (c) are incorrect.
Conclusion:
Condensation of water into fog or clouds requires, condensation nuclei.
Want to see more full solutions like this?
Chapter 23 Solutions
Physical Science
Additional Science Textbook Solutions
Cosmic Perspective Fundamentals
Principles of Anatomy and Physiology
Human Physiology: An Integrated Approach (8th Edition)
Campbell Biology (11th Edition)
Fundamentals Of Thermodynamics
- Find the current in the R₁ resistor in the drawing (V₁=16.0V, V2=23.0 V, V₂ = 16.0V, R₁ = 2005, R₂ = and R₂ = 2.705) 2.3052 VIT A www R www R₂ R₂ Vaarrow_forwardWhich of the following laws is true regarding tensile strength? • tensile strength T ①Fbreak = Wtfest Piece thickness rate (mm) ②T = test piece width rabe (mm) Fbreak break watarrow_forwardThe position of a squirrel running in a park is given by = [(0.280 m/s)t + (0.0360 m/s²)t²] + (0.0190 m/s³)ť³ĵj. What is v₂(t), the x-component of the velocity of the squirrel, as a function of time?arrow_forward
- No chatgpt plsarrow_forwardYou hold a spherical salad bowl 85 cm in front of your face with the bottom of the bowl facing you. The salad bowl is made of polished metal with a 40 cm radius of curvature. Where is the image of your 2.0 cm tall nose located? What is image's size, orientation, and nature. I keep getting the answer -26.2, but it keeps saying it is wrong. I just want to know what i'm doing wrong.arrow_forwardA converging lens with a focal length of 6.70 cm forms an image of a 4.60 mm tall real object that is to the left of the lens. The image is 1.50 cm tall and erect. Where are the object and image located? Is the image real or virtual? Please show all stepsarrow_forward
- No chatgpt pls will upvotearrow_forwardneed help part earrow_forwardCritical damping is the case where the mass never actually crosses over equilibrium position, but reaches equilibrium as fast as possible. Experiment with changing c to find the critical damping constant. Use the same initial conditions as in the last problem. Zoom in a bit to make sure you don't allow any oscillations to take place - even small ones.arrow_forward
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337515863/9781337515863_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079137/9781305079137_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305960961/9781305960961_smallCoverImage.gif)