Physics for Scientists and Engineers with Modern Physics
10th Edition
ISBN: 9781337553292
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 15P
Four closed surfaces, S1 through S4 together with the charges −2Q, Q, and −Q are sketched in Figure P23.15. (The colored lines are the intersections of the surfaces with the page.) Find the electric flux through each surface.
Figure P23.15
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Assume the magnitude of the electric field on each face of the cube of edge L = 1.00 m in Figure P23.32 is uniform and the directions of the fields on each face are as indicated. Find (a) the net electric flux through the cube and (b) the net charge inside the cube. (c) Could the net charge he a single point charge?
A particle with charge Q is located on the axis of a circle of radius R at a distance b from the plane of the circle (as shown). Show that if one-fourth of the electric flux from the charge passes through the circle, then R = √(3b).
A solid insulating sphere of radius 5 cm carries electric charge uniformly distributed throughout its volume. Concentric with the sphere is a conducting spherical shell with no net charge as shown in Figure OQ24.9. The inner radius of the shell is 10 cm, and the outer radius is 15 cm. No other charges are nearby. (a) Rank the magnitude of the electric Held at points A (at radius 4 cm), B (radius 8 cm), C (radius 12 cm), and I) (radius 16 cm) from largest to smallest. Display any cases of equality in your ranking, (b) Similarly rank the electric flux through concentric spherical surfaces through points A, B. C, and D.
Chapter 23 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 23.2 - Suppose a point charge is located at the center of...Ch. 23.3 - If the net flux through a gaussian surface is...Ch. 23 - A negatively charged rod of finite length carries...Ch. 23 - A positively charged disk has a uniform charge per...Ch. 23 - A uniformly charged ring of radius 10.0 cm has a...Ch. 23 - The electric field along the axis of a uniformly...Ch. 23 - Example 23.3 derives the exact expression for the...Ch. 23 - A uniformly charged rod of length L and total...Ch. 23 - A continuous line of charge lies along the x axis,...Ch. 23 - A thin rod of length and uniform charge per unit...
Ch. 23 - (a) Consider a uniformly charged, thin-walled,...Ch. 23 - A vertical electric field of magnitude 2.00 104...Ch. 23 - A flat surface of area 3.20 m2 is rotated in a...Ch. 23 - A nonuniform electric field is given by the...Ch. 23 - An uncharged, nonconducting, hollow sphere of...Ch. 23 - Find the net electric flux through the spherical...Ch. 23 - Four closed surfaces, S1 through S4 together with...Ch. 23 - A charge of 170 C is at the center of a cube of...Ch. 23 - (a) Find the net electric flux through the cube...Ch. 23 - A particle with charge of 12.0 C is placed at the...Ch. 23 - A particle with charge Q = 5.00 C is located at...Ch. 23 - Prob. 20PCh. 23 - Prob. 21PCh. 23 - Find the net electric flux through (a) the closed...Ch. 23 - Figure P23.23 represents the top view of a cubic...Ch. 23 - Determine the magnitude of the electric field at...Ch. 23 - Prob. 25PCh. 23 - Prob. 26PCh. 23 - A large, flat, horizontal sheet of charge has a...Ch. 23 - A nonconducting wall carries charge with a uniform...Ch. 23 - A uniformly charged, straight filament 7.00 m in...Ch. 23 - You are working on a laboratory device that...Ch. 23 - Consider a long, cylindrical charge distribution...Ch. 23 - Assume the magnitude of the electric field on each...Ch. 23 - A solid sphere of radius 40.0 cm has a total...Ch. 23 - A cylindrical shell of radius 7.00 cm and length...Ch. 23 - You are working for the summer at a research...Ch. 23 - You are working for the summer at a research...Ch. 23 - Find the electric flux through the plane surface...Ch. 23 - Prob. 38APCh. 23 - Prob. 39APCh. 23 - Show that the maximum magnitude Emax of the...Ch. 23 - A line of positive charge is formed into a...Ch. 23 - Prob. 42APCh. 23 - A sphere of radius R = 1.00 m surrounds a particle...Ch. 23 - A sphere of radius R surrounds a particle with...Ch. 23 - A slab of insulating material has a nonuniform...Ch. 23 - A sphere of radius 2a is made of a nonconducting...Ch. 23 - Prob. 47CPCh. 23 - Prob. 48CPCh. 23 - Review. A slab of insulating material (infinite in...Ch. 23 - Identical thin rods of length 2a carry equal...Ch. 23 - A solid insulating sphere of radius R has a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
7. (II) (a) What is the current in the element of an electric clothes dryer with a resistance of 8.6 ?when it i...
Physics: Principles with Applications
Why doesnt Earths rotation provide a suitable time standard?
Essential University Physics (3rd Edition)
60. The solar system is 25,000 light years from the center of our Milky Way galaxy. One light year is the dista...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
2. Which of the following is the best example of the use of a referent? _
a. A red bicycle
b. Big as a dump tru...
Physical Science
1. Rub your hands together vigorously. What happens? Discuss the energy transfers and transformations that take...
College Physics: A Strategic Approach (4th Edition)
56. Global Positioning System. Learn more about the global positioning system and its uses. Write a short repo...
The Cosmic Perspective (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A total charge Q is distributed uniformly on a metal ring of radius R. a. What is the magnitude of the electric field in the center of the ring at point O (Fig. P24.61)? b. What is the magnitude of the electric field at the point A lying on the axis of the ring a distance R from the center O (same length as the radius of the ring)? FIGURE P24.61arrow_forwardA pyramid has a square base with an area of 4.00 m2 and a height of 3.5 m. Its walls are four isosceles triangles. The pyramid is in a uniform electric field of 655 N/C pointing downward (Fig. P25.13). What is the electric flux through the square base?arrow_forwardThe colored regions in Figure P25.21 represent four three-dimensional Gaussian surfaces A through D. The regions may also contain three charged particles, with qA + +5.00 nC, qB = 5.00 nC, and qC = +8.00 nC, that are nearby as shown. What is the electric flux through each of the four surfaces? FIGURE P25.21arrow_forward
- The figure gives the magnitude of the electric field inside and outside a sphere with a positive charge distributed uniformly throughout its volume. The scale of the vertical axis is set by Es = 4.3 × 107 N/C. What is the charge on the sphere?arrow_forwardA particle with charge Q=5.00μC is located at the center of a cubeof edge L=0.100m. In addition, six other identical charged particles having q=−1.00μC are positioned symmetrically around Q as shown in Figure P24.19. Determine the electric flux through one face of the cube.arrow_forwardA point charge is located at the origin. Centered along the x axis is a cylindrical closed surface of radius 10 cm with one end surface located at x = 2 m and the other end surface located at x = 2.5 m. If the magnitude of the electric flux through the surface at x = 2 m is 4 N . m2 /C, what is the magnitude of the electric flux through the surface at x = 2.5 m? Select one: a. 1.8 N . m2 /C b. 2.56 N . m2 /C c. 1.0 N . m2 /C d. 4.0 N . m2 /C e. 5.0 N . m2 /Carrow_forward
- A solid insulating sphere of radius 0.06 cm carries a total charge of 30 nC. OConcentric with this sphere is a conducting spherical shell with an inner radius of 0.13 cm and an outer radius of 0.17 cm and carrying a total charge of -15 nC. Find the magnitude of the electric field at r = 0.20 cm from the center of the two spheres and shell. N O 2.157æ103 N O 2.157x106 N C O 2.157x10° ANarrow_forwardA semicircular wire of radius R is uniformly charged with Q₁ = 4.4Q and located in a two dimensional coordinate system as shown in the figure. A point charge Q₂ = 0.4Q is placed at 0.7R on the y-axis. Determine the electric field at point o in terms of kQ/R² where is the unit vector. Take rt-3.14 and provide your answer with two decimal places. Answer: Q₁ Q₂❤ 0 R Xxarrow_forwardTwo large, parallel, non-conducting sheets, each with a fixed uniform charge on one side, have surface charge densities of o+ = +7.4 µC/m2 for the positively charged sheet, and o- = -5.3 µC/m2 for the negatively charged sheet. +y What is the magnitude of the electric field in the region above both the sheets? Express your answer to the nearest kN/C.arrow_forward
- In each figure, the dashed circle is the cross section of a closed Gaussian surface. +2.0 mC +2.0 mC 9=? +3.0 mC -3.0 mC The net electric flux passing through the Gaussian surface is +3.9 × 108 N · m²/C. What is the value of the unknown charge?arrow_forwardA sphere of radius R surrounds a particle with charge Q located at its center as shown in Figure P23.43. Find the electric flux through a circular cap of half-angle θ.arrow_forwardA solid rod 2.54 cm in diameter and 1.50 m long carries a uniform volume charge density. The electric field inside the rod, halfway between its axis and its surface but not near either end, has magnitude 681 kN/C and points radially outward. a. Find the rod’s total charge. b. Find the electric field at the surface of the rod.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY