
Concept explainers
(a) Consider a uniformly charged, thin-walled, right circular cylindrical shell having total charge Q, radius R, and length ℓ. Determine the electric field at a point a distance d from the right side of the cylinder as shown in Figure P23.9. Suggestion: Use the result of Example 23.2 and treat the cylinder as a collection of ring charges. (b) What If? Consider now a solid cylinder with the same dimensions and carrying the same charge, uniformly distributed through its volume. Use the result of Example 23.3 to find the field it creates at the same point.
Figure P23.9
(a)

The electric field at a point a distance
Answer to Problem 9P
The electric field at a point a distance
Explanation of Solution
Given info: The total charge is
Consider one ring with thickness
Figure (1)
The formula used to find the electric field at the chosen point is,
Here
Integrate on both side from the limits
Conclusion:
Therefore, the electric field at a point a distance
(b)

The electric field created at the same point by a solid cylinder with same dimensions and carrying the same charge.
Answer to Problem 9P
The electric field created at the same point by a solid cylinder with same dimensions and carrying the same charge is
Explanation of Solution
Given info: The total charge is
The charge per unit area is,
Here,
The field produced by the one disk is,
Here,
Integrate on the both side to get the total electric field
Further solve the above expression.
Conclusion:
Therefore, the electric field created at the same point by a solid cylinder with same dimensions and carrying the same charge is
Want to see more full solutions like this?
Chapter 23 Solutions
Physics for Scientists and Engineers with Modern Physics
Additional Science Textbook Solutions
Fundamentals Of Thermodynamics
Organic Chemistry
SEELEY'S ANATOMY+PHYSIOLOGY
Biology: Life on Earth with Physiology (11th Edition)
Essentials of Human Anatomy & Physiology (12th Edition)
Cosmic Perspective Fundamentals
- I need help with part B. I cant seem to get the correct answer. Please walk me through what youre doing to get to the answer and what that could bearrow_forwardQuestion 6: Chlorine is widely used to purify municipal water supplies and to treat swimming pool waters. Suppose that the volume of a particular sample of Cl₂ gas is 8.70 L at 895 torr and 24°C. (a) How many grams of Cl₂ are in the sample? ⚫ Atomic mass of CI = 35.453 g/mol • Molar mass of Cl₂ = 2 x 35.453 = 70.906 g/mol Solution: Use the Ideal Gas Law: Step 1: Convert Given Values • Pressure: P = 895 torr → atm PV= = nRT 1 P = 895 × = 1.1789 atm 760 • Temperature: Convert to Kelvin: T24273.15 = 297.15 K • Gas constant: R = 0.0821 L atm/mol. K Volume: V = 8.70 L Step 2: Solve for n . PV n = RT n = (1.1789)(8.70) (0.0821)(297.15) 10.25 n = = 0.420 mol 24.405 Step 3: Calculate Mass of Cl₂ Final Answer: 29.78 g of Cl₂. mass nx M mass= (0.420)(70.906) mass= 29.78 garrow_forwardE1 R₁ w 0.50 20 Ω 12 R₁₂ ww ΒΩ R₂ 60 E3 C RA w 15 Ω E2 0.25 E4 0.75 Ω 0.5 Ωarrow_forward
- What is the force (in N) on the 2.0 μC charge placed at the center of the square shown below? (Express your answer in vector form.) 5.0 με 4.0 με 2.0 με + 1.0 m 1.0 m -40 με 2.0 μCarrow_forwardWhat is the force (in N) on the 5.4 µC charge shown below? (Express your answer in vector form.) −3.1 µC5.4 µC9.2 µC6.4 µCarrow_forwardAn ideal gas in a sealed container starts out at a pressure of 8900 N/m2 and a volume of 5.7 m3. If the gas expands to a volume of 6.3 m3 while the pressure is held constant (still at 8900 N/m2), how much work is done by the gas? Give your answer as the number of Joules.arrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College





