Business Math (11th Edition)
11th Edition
ISBN: 9780134496436
Author: Cheryl Cleaves, Margie Hobbs, Jeffrey Noble
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2.3, Problem 13SE
To determine
To calculate: The quotient for the expression
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
By considering appropriate series expansions,
e². e²²/2. e²³/3.
....
=
= 1 + x + x² + ·
...
when |x| < 1.
By expanding each individual exponential term on the left-hand side
the coefficient of x- 19 has the form
and multiplying out,
1/19!1/19+r/s,
where 19 does not divide s. Deduce that
18! 1 (mod 19).
Proof: LN⎯⎯⎯⎯⎯LN¯ divides quadrilateral KLMN into two triangles. The sum of the angle measures in each triangle is ˚, so the sum of the angle measures for both triangles is ˚. So, m∠K+m∠L+m∠M+m∠N=m∠K+m∠L+m∠M+m∠N=˚. Because ∠K≅∠M∠K≅∠M and ∠N≅∠L, m∠K=m∠M∠N≅∠L, m∠K=m∠M and m∠N=m∠Lm∠N=m∠L by the definition of congruence. By the Substitution Property of Equality, m∠K+m∠L+m∠K+m∠L=m∠K+m∠L+m∠K+m∠L=°,°, so (m∠K)+ m∠K+ (m∠L)= m∠L= ˚. Dividing each side by gives m∠K+m∠L=m∠K+m∠L= °.°. The consecutive angles are supplementary, so KN⎯⎯⎯⎯⎯⎯∥LM⎯⎯⎯⎯⎯⎯KN¯∥LM¯ by the Converse of the Consecutive Interior Angles Theorem. Likewise, (m∠K)+m∠K+ (m∠N)=m∠N= ˚, or m∠K+m∠N=m∠K+m∠N= ˚. So these consecutive angles are supplementary and KL⎯⎯⎯⎯⎯∥NM⎯⎯⎯⎯⎯⎯KL¯∥NM¯ by the Converse of the Consecutive Interior Angles Theorem. Opposite sides are parallel, so quadrilateral KLMN is a parallelogram.
By considering appropriate series expansions,
ex · ex²/2 . ¸²³/³ . . ..
=
= 1 + x + x² +……
when |x| < 1.
By expanding each individual exponential term on the left-hand side
and multiplying out, show that the coefficient of x 19 has the form
1/19!+1/19+r/s,
where 19 does not divide s.
Chapter 2 Solutions
Business Math (11th Edition)
Ch. 2.1 - Prob. 1-1SCCh. 2.1 - Prob. 1-2SCCh. 2.1 - Prob. 1-3SCCh. 2.1 - Prob. 1-4SCCh. 2.1 - Prob. 1-5SCCh. 2.1 - Prob. 1-6SCCh. 2.1 - Prob. 2-1SCCh. 2.1 - Prob. 2-2SCCh. 2.1 - Prob. 2-3SCCh. 2.1 - Prob. 2-4SC
Ch. 2.1 - Prob. 2-5SCCh. 2.1 - Prob. 3-1SCCh. 2.1 - Prob. 3-2SCCh. 2.1 - Prob. 3-3SCCh. 2.1 - Prob. 3-4SCCh. 2.1 - Prob. 3-5SCCh. 2.1 - Prob. 4-1SCCh. 2.1 - Prob. 4-2SCCh. 2.1 - Prob. 4-3SCCh. 2.1 - Prob. 4-4SCCh. 2.1 - Prob. 4-5SCCh. 2.1 - Prob. 4-6SCCh. 2.1 - Prob. 4-7SCCh. 2.1 - Prob. 4-8SCCh. 2.1 - Prob. 5-1SCCh. 2.1 - Prob. 5-2SCCh. 2.1 - Prob. 5-3SCCh. 2.1 - Prob. 5-4SCCh. 2.1 - Prob. 5-5SCCh. 2.1 - Prob. 5-6SCCh. 2.1 - Prob. 1SECh. 2.1 - Prob. 2SECh. 2.1 - Prob. 3SECh. 2.1 - Prob. 4SECh. 2.1 - Prob. 5SECh. 2.1 - Prob. 6SECh. 2.1 - Prob. 7SECh. 2.1 - Prob. 8SECh. 2.1 - Prob. 9SECh. 2.1 - Prob. 10SECh. 2.1 - Prob. 11SECh. 2.1 - Prob. 12SECh. 2.1 - Prob. 13SECh. 2.1 - Prob. 14SECh. 2.1 - Prob. 15SECh. 2.1 - Prob. 16SECh. 2.1 - Prob. 17SECh. 2.1 - Prob. 18SECh. 2.1 - Prob. 19SECh. 2.1 - Prob. 20SECh. 2.1 - Prob. 21SECh. 2.1 - Prob. 22SECh. 2.1 - Prob. 23SECh. 2.1 - Prob. 24SECh. 2.1 - Prob. 25SECh. 2.1 - Prob. 26SECh. 2.1 - Prob. 27SECh. 2.1 - Prob. 28SECh. 2.1 - Prob. 29SECh. 2.1 - Prob. 30SECh. 2.1 - Prob. 31SECh. 2.1 - Prob. 32SECh. 2.1 - Prob. 33SECh. 2.1 - Prob. 34SECh. 2.1 - Prob. 35SECh. 2.1 - Prob. 36SECh. 2.1 - Prob. 37SECh. 2.1 - Prob. 38SECh. 2.2 - Prob. 1-1SCCh. 2.2 - Prob. 1-2SCCh. 2.2 - Prob. 1-3SCCh. 2.2 - Prob. 1-4SCCh. 2.2 - Prob. 1-5SCCh. 2.2 - Prob. 2-1SCCh. 2.2 - Prob. 2-2SCCh. 2.2 - Prob. 2-3SCCh. 2.2 - Prob. 2-4SCCh. 2.2 - Prob. 2-5SCCh. 2.2 - Prob. 3-1SCCh. 2.2 - Prob. 3-2SCCh. 2.2 - Prob. 3-3SCCh. 2.2 - Prob. 3-4SCCh. 2.2 - Prob. 3-5SCCh. 2.2 - Prob. 3-6SCCh. 2.2 - Prob. 4-1SCCh. 2.2 - Prob. 4-2SCCh. 2.2 - Prob. 4-3SCCh. 2.2 - Prob. 4-4SCCh. 2.2 - Prob. 4-5SCCh. 2.2 - Prob. 4-6SCCh. 2.2 - Prob. 4-7SCCh. 2.2 - Prob. 4-8SCCh. 2.2 - Prob. 4-9SCCh. 2.2 - Prob. 4-10SCCh. 2.2 - Prob. 1SECh. 2.2 - Prob. 2SECh. 2.2 - Prob. 3SECh. 2.2 - Prob. 4SECh. 2.2 - Prob. 5SECh. 2.2 - Prob. 6SECh. 2.2 - Prob. 7SECh. 2.2 - Prob. 8SECh. 2.2 - Prob. 9SECh. 2.2 - Prob. 10SECh. 2.2 - Prob. 11SECh. 2.2 - Prob. 12SECh. 2.2 - Prob. 13SECh. 2.2 - Prob. 14SECh. 2.2 - Prob. 15SECh. 2.2 - Prob. 16SECh. 2.2 - Prob. 17SECh. 2.2 - Prob. 18SECh. 2.2 - Prob. 19SECh. 2.2 - Prob. 20SECh. 2.2 - Prob. 21SECh. 2.2 - Prob. 22SECh. 2.2 - Prob. 23SECh. 2.2 - Prob. 24SECh. 2.2 - Prob. 25SECh. 2.2 - Prob. 26SECh. 2.2 - Prob. 27SECh. 2.2 - Prob. 28SECh. 2.2 - Prob. 29SECh. 2.2 - Prob. 30SECh. 2.3 - Prob. 1-1SCCh. 2.3 - Prob. 1-2SCCh. 2.3 - Prob. 1-3SCCh. 2.3 - Prob. 1-4SCCh. 2.3 - Prob. 1-5SCCh. 2.3 - Prob. 1-6SCCh. 2.3 - Prob. 1-7SCCh. 2.3 - Prob. 2-1SCCh. 2.3 - Prob. 2-2SCCh. 2.3 - Prob. 2-3SCCh. 2.3 - Prob. 2-4SCCh. 2.3 - Prob. 2-5SCCh. 2.3 - Prob. 2-6SCCh. 2.3 - Prob. 2-7SCCh. 2.3 - Prob. 1SECh. 2.3 - Prob. 2SECh. 2.3 - Prob. 3SECh. 2.3 - Prob. 4SECh. 2.3 - Prob. 5SECh. 2.3 - Prob. 6SECh. 2.3 - Prob. 7SECh. 2.3 - Prob. 8SECh. 2.3 - Prob. 9SECh. 2.3 - Prob. 10SECh. 2.3 - Prob. 11SECh. 2.3 - Prob. 12SECh. 2.3 - Prob. 13SECh. 2.3 - Prob. 14SECh. 2.3 - Prob. 15SECh. 2.3 - Prob. 16SECh. 2.3 - Prob. 17SECh. 2.3 - Prob. 18SECh. 2.3 - Prob. 19SECh. 2.3 - Prob. 20SECh. 2.3 - Prob. 21SECh. 2.3 - Prob. 22SECh. 2.3 - Prob. 23SECh. 2.3 - Prob. 24SECh. 2 - Prob. 1ESCh. 2 - Prob. 2ESCh. 2 - Prob. 3ESCh. 2 - Prob. 4ESCh. 2 - Prob. 5ESCh. 2 - Prob. 6ESCh. 2 - Prob. 7ESCh. 2 - Prob. 8ESCh. 2 - Prob. 9ESCh. 2 - Prob. 10ESCh. 2 - Prob. 11ESCh. 2 - Prob. 12ESCh. 2 - Prob. 13ESCh. 2 - Prob. 14ESCh. 2 - Prob. 15ESCh. 2 - Prob. 16ESCh. 2 - Prob. 17ESCh. 2 - Prob. 18ESCh. 2 - Prob. 19ESCh. 2 - Prob. 20ESCh. 2 - Prob. 21ESCh. 2 - Prob. 22ESCh. 2 - Prob. 23ESCh. 2 - Prob. 24ESCh. 2 - Prob. 25ESCh. 2 - Prob. 26ESCh. 2 - Prob. 27ESCh. 2 - Prob. 28ESCh. 2 - Prob. 29ESCh. 2 - Prob. 30ESCh. 2 - Prob. 31ESCh. 2 - Prob. 32ESCh. 2 - Prob. 33ESCh. 2 - Prob. 34ESCh. 2 - Prob. 35ESCh. 2 - Prob. 36ESCh. 2 - Prob. 37ESCh. 2 - Prob. 38ESCh. 2 - Prob. 39ESCh. 2 - Prob. 40ESCh. 2 - Prob. 41ESCh. 2 - Prob. 42ESCh. 2 - Prob. 43ESCh. 2 - Prob. 44ESCh. 2 - Prob. 45ESCh. 2 - Prob. 46ESCh. 2 - Prob. 47ESCh. 2 - Prob. 48ESCh. 2 - Prob. 49ESCh. 2 - Prob. 50ESCh. 2 - Prob. 51ESCh. 2 - Prob. 52ESCh. 2 - Prob. 53ESCh. 2 - Prob. 54ESCh. 2 - Prob. 55ESCh. 2 - Prob. 56ESCh. 2 - Prob. 57ESCh. 2 - Prob. 58ESCh. 2 - Prob. 59ESCh. 2 - Prob. 60ESCh. 2 - Prob. 61ESCh. 2 - Prob. 62ESCh. 2 - Prob. 63ESCh. 2 - Prob. 64ESCh. 2 - Prob. 65ESCh. 2 - Prob. 66ESCh. 2 - Prob. 67ESCh. 2 - Prob. 68ESCh. 2 - Prob. 69ESCh. 2 - Prob. 70ESCh. 2 - Prob. 71ESCh. 2 - Prob. 72ESCh. 2 - Prob. 73ESCh. 2 - Prob. 74ESCh. 2 - Prob. 75ESCh. 2 - Prob. 76ESCh. 2 - Prob. 78ESCh. 2 - Prob. 79ESCh. 2 - Prob. 80ESCh. 2 - Prob. 81ESCh. 2 - Prob. 82ESCh. 2 - Prob. 83ESCh. 2 - Prob. 84ESCh. 2 - Prob. 1PTCh. 2 - Prob. 2PTCh. 2 - Prob. 3PTCh. 2 - Prob. 4PTCh. 2 - Prob. 5PTCh. 2 - Prob. 6PTCh. 2 - Prob. 7PTCh. 2 - Prob. 8PTCh. 2 - Prob. 9PTCh. 2 - Prob. 10PTCh. 2 - Prob. 11PTCh. 2 - Prob. 12PTCh. 2 - Prob. 13PTCh. 2 - Prob. 14PTCh. 2 - Prob. 15PTCh. 2 - Prob. 16PTCh. 2 - Prob. 17PTCh. 2 - Prob. 18PTCh. 2 - Prob. 19PTCh. 2 - Prob. 20PTCh. 2 - Prob. 21PTCh. 2 - Prob. 22PTCh. 2 - Prob. 23PTCh. 2 - Prob. 24PTCh. 2 - Prob. 1CTCh. 2 - Prob. 2CTCh. 2 - Prob. 3CTCh. 2 - Prob. 4CTCh. 2 - Prob. 5CTCh. 2 - Prob. 6CTCh. 2 - Prob. 7CTCh. 2 - Prob. 8CTCh. 2 - Prob. 9CTCh. 2 - Prob. 10CTCh. 2 - Prob. 11CTCh. 2 - Prob. 12CTCh. 2 - Prob. 1CPCh. 2 - Prob. 2CPCh. 2 - Prob. 1CS1Ch. 2 - Prob. 2CS1Ch. 2 - Prob. 3CS1Ch. 2 - Prob. 1CS2Ch. 2 - Prob. 2CS2Ch. 2 - Prob. 3CS2Ch. 2 - Prob. 4CS2
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Let 1 1 r 1+ + + 2 3 + = 823 823s Without calculating the left-hand side, prove that r = s (mod 823³).arrow_forwardFor each real-valued nonprincipal character X mod 16, verify that L(1,x) 0.arrow_forward*Construct a table of values for all the nonprincipal Dirichlet characters mod 16. Verify from your table that Σ x(3)=0 and Χ mod 16 Σ χ(11) = 0. x mod 16arrow_forward
- For each real-valued nonprincipal character x mod 16, verify that A(225) > 1. (Recall that A(n) = Σx(d).) d\narrow_forward24. Prove the following multiplicative property of the gcd: a k b h (ah, bk) = (a, b)(h, k)| \(a, b)' (h, k) \(a, b)' (h, k) In particular this shows that (ah, bk) = (a, k)(b, h) whenever (a, b) = (h, k) = 1.arrow_forward20. Let d = (826, 1890). Use the Euclidean algorithm to compute d, then express d as a linear combination of 826 and 1890.arrow_forward
- Let 1 1+ + + + 2 3 1 r 823 823s Without calculating the left-hand side, Find one solution of the polynomial congruence 3x²+2x+100 = 0 (mod 343). Ts (mod 8233).arrow_forwardBy considering appropriate series expansions, prove that ez · e²²/2 . e²³/3 . ... = 1 + x + x² + · ·. when <1.arrow_forwardProve that Σ prime p≤x p=3 (mod 10) 1 Р = for some constant A. log log x + A+O 1 log x ,arrow_forward
- Let Σ 1 and g(x) = Σ logp. f(x) = prime p≤x p=3 (mod 10) prime p≤x p=3 (mod 10) g(x) = f(x) logx - Ր _☑ t¯¹ƒ(t) dt. Assuming that f(x) ~ 1½π(x), prove that g(x) ~ 1x. 米 (You may assume the Prime Number Theorem: 7(x) ~ x/log x.) *arrow_forwardLet Σ logp. f(x) = Σ 1 and g(x) = Σ prime p≤x p=3 (mod 10) (i) Find ƒ(40) and g(40). prime p≤x p=3 (mod 10) (ii) Prove that g(x) = f(x) logx – [*t^¹ƒ(t) dt. 2arrow_forwardYou guys solved for the wrong answer. The answer in the box is incorrect help me solve for the right one.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
ALGEBRAIC EXPRESSIONS & EQUATIONS | GRADE 6; Author: SheenaDoria;https://www.youtube.com/watch?v=fUOdon3y1hU;License: Standard YouTube License, CC-BY
Algebraic Expression And Manipulation For O Level; Author: Maths Solution;https://www.youtube.com/watch?v=MhTyodgnzNM;License: Standard YouTube License, CC-BY
Algebra for Beginners | Basics of Algebra; Author: Geek's Lesson;https://www.youtube.com/watch?v=PVoTRu3p6ug;License: Standard YouTube License, CC-BY
Introduction to Algebra | Algebra for Beginners | Math | LetsTute; Author: Let'stute;https://www.youtube.com/watch?v=VqfeXMinM0U;License: Standard YouTube License, CC-BY