
(a)
Interpretation: For a given compound set of compounds, the given
Concept Introduction: An azide synthesis involves the reaction between
Sodium cyanoborohydride is a strong reducing agent than sodium borohydride. It reduces the carbonyl group into amine group in a rapid way. So, it is called as reductive amination reactions.
Aldehyde or ketone group is reacted with primary amine in the presence of sodium cyanoborohydride as a reducing agent and a proton source in the reaction medium to produce secondary amines.
Aldehyde or ketone group is reacted with secondary amine in the presence of sodium cyanoborohydride as a reducing agent and a proton source in the reaction medium to produce tertiary amines.
(b)
Interpretation: For a given compound set of compounds, the given amines are to be prepared via an azide synthesis, reductive amination starting from sodium azide
Concept Introduction: An azide synthesis involves the reaction between alkyl halide and sodium azide. Alkyl azide is formed in the first step. Alkyl azide on reduction with hydrogen in the presence of platinum produces primary amine. In this way, primary amines are synthesized while secondary and tertiary amines are not formed as by-products.
Sodium cyanoborohydride is a strong reducing agent than sodium borohydride. It reduces the carbonyl group into amine group in a rapid way. So, it is called as reductive amination reactions. Aldehyde or ketone group is reacted with ammonia in the presence of sodium cyanoborohydride as a reducing agent and a proton source in the reaction medium to produce primary amines.
Aldehyde or ketone group is reacted with primary amine in the presence of sodium cyanoborohydride as a reducing agent and a proton source in the reaction medium to produce secondary amines.
Aldehyde or ketone group is reacted with secondary amine in the presence of sodium cyanoborohydride as a reducing agent and a proton source in the reaction medium to produce tertiary amines.
(c)
Interpretation: For a given compound set of compounds, the given amines are to be prepared via an azide synthesis, reductive amination starting from sodium azide
Concept Introduction: An azide synthesis involves the reaction between alkyl halide and sodium azide. Alkyl azide is formed in the first step. Alkyl azide on reduction with hydrogen in the presence of platinum produces primary amine. In this way, primary amines are synthesized while secondary and tertiary amines are not formed as by-products.
Sodium cyanoborohydride is a strong reducing agent than sodium borohydride. It reduces the carbonyl group into amine group in a rapid way. So, it is called as reductive amination reactions. Aldehyde or ketone group is reacted with ammonia in the presence of sodium cyanoborohydride as a reducing agent and a proton source in the reaction medium to produce primary amines.
Aldehyde or ketone group is reacted with primary amine in the presence of sodium cyanoborohydride as a reducing agent and a proton source in the reaction medium to produce secondary amines.
Aldehyde or ketone group is reacted with secondary amine in the presence of sodium cyanoborohydride as a reducing agent and a proton source in the reaction medium to produce tertiary amines.
(d)
Interpretation: For a given compound set of compounds, the given amines are to be prepared via an azide synthesis, reductive amination starting from sodium azide
Concept Introduction: An azide synthesis involves the reaction between alkyl halide and sodium azide. Alkyl azide is formed in the first step. Alkyl azide on reduction with hydrogen in the presence of platinum produces primary amine. In this way, primary amines are synthesized while secondary and tertiary amines are not formed as by-products.
Sodium cyanoborohydride is a strong reducing agent than sodium borohydride. It reduces the carbonyl group into amine group in a rapid way. So, it is called as reductive amination reactions. Aldehyde or ketone group is reacted with ammonia in the presence of sodium cyanoborohydride as a reducing agent and a proton source in the reaction medium to produce primary amines.
Aldehyde or ketone group is reacted with primary amine in the presence of sodium cyanoborohydride as a reducing agent and a proton source in the reaction medium to produce secondary amines.
Aldehyde or ketone group is reacted with secondary amine in the presence of sodium cyanoborohydride as a reducing agent and a proton source in the reaction medium to produce tertiary amines.
(e)
Interpretation: For a given compound set of compounds, the given amines are to be prepared via an azide synthesis, reductive amination starting from sodium azide
Concept Introduction: An azide synthesis involves the reaction between alkyl halide and sodium azide. Alkyl azide is formed in the first step. Alkyl azide on reduction with hydrogen in the presence of platinum produces primary amine. In this way, primary amines are synthesized while secondary and tertiary amines are not formed as by-products.
Sodium cyanoborohydride is a strong reducing agent than sodium borohydride. It reduces the carbonyl group into amine group in a rapid way. So, it is called as reductive amination reactions. Aldehyde or ketone group is reacted with ammonia in the presence of sodium cyanoborohydride as a reducing agent and a proton source in the reaction medium to produce primary amines.
Aldehyde or ketone group is reacted with primary amine in the presence of sodium cyanoborohydride as a reducing agent and a proton source in the reaction medium to produce secondary amines.
Aldehyde or ketone group is reacted with secondary amine in the presence of sodium cyanoborohydride as a reducing agent and a proton source in the reaction medium to produce tertiary amines.
(f)
Interpretation: For a given compound set of compounds, the given amines are to be prepared via an azide synthesis, reductive amination starting from sodium azide
Concept Introduction: An azide synthesis involves the reaction between alkyl halide and sodium azide. Alkyl azide is formed in the first step. Alkyl azide on reduction with hydrogen in the presence of platinum produces primary amine. In this way, primary amines are synthesized while secondary and tertiary amines are not formed as by-products.
Sodium cyanoborohydride is a strong reducing agent than sodium borohydride. It reduces the carbonyl group into amine group in a rapid way. So, it is called as reductive amination reactions. Aldehyde or ketone group is reacted with ammonia in the presence of sodium cyanoborohydride as a reducing agent and a proton source in the reaction medium to produce primary amines.
Aldehyde or ketone group is reacted with primary amine in the presence of sodium cyanoborohydride as a reducing agent and a proton source in the reaction medium to produce secondary amines.
Aldehyde or ketone group is reacted with secondary amine in the presence of sodium cyanoborohydride as a reducing agent and a proton source in the reaction medium to produce tertiary amines.

Want to see the full answer?
Check out a sample textbook solution
Chapter 22 Solutions
ORGANIC CHEMISTRY-STD.WILEY PLUS CARD
- Synthesize 2-Hydroxy-2-phenylacetonitrile from phenylmethanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardSynthesize N-Methylcyclohexylamine from cyclohexanol using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forward
- If possible, please provide the formula of the compound 3,3-dimethylbut-2-enal.arrow_forwardSynthesize 1,4-dibromobenzene from acetanilide (N-phenylacetamide) using the necessary organic or inorganic reagents. Draw the structures of the compounds.arrow_forwardIndicate the products obtained by mixing (3-oxo-3-phenylpropyl)triphenylphosphonium bromide with sodium hydride.arrow_forward
- We mix N-ethyl-2-hexanamine with excess methyl iodide and followed by heating with aqueous Ag2O. Indicate the major products obtained.arrow_forwardIndicate the products obtained by mixing acetophenone with iodine and NaOH.arrow_forwardIndicate the products obtained by mixing 2-Propanone and ethyllithium and performing a subsequent acid hydrolysis.arrow_forward
- Indicate the products obtained if (E)-2-butenal and 3-oxo-butanenitrile are mixed with sodium ethoxide in ethanol.arrow_forwardQuestion 3 (4 points), Draw a full arrow-pushing mechanism for the following reaction Please draw all structures clearly. Note that this intramolecular cyclization is analogous to the mechanism for halohydrin formation. COH Br + HBr Brarrow_forwardIndicate the products obtained if 2,2-dimethylpropanal and acetaldehyde are mixed with sodium ethoxide in ethanol.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





