EBK ENGINEERING MECHANICS
15th Edition
ISBN: 9780137569830
Author: HIBBELER
Publisher: VST
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 22, Problem 72P
To determine
The position of the block as a function of time.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 9-kg block is suspended from a spring having a stiffness of k = 200 N/m. If the block is given an upward velocity of 0.4 m/s when it is 95 mm above its equilibrium position, determine the equation which describes the motion. Assume that positive displacement is downward.
A spring is stretched 175 mm by an 8-kg block. If the block is displaced 100 mm downward from its equilibrium position and given a downward velocity of 1.50 ms, determine the differential equation which describes the motion. Assume that positive displacement is downward. Also
determine the position of the block when t = 0.22 s. (Show free-body diagram of the system.)
An 8-kgkg block is suspended from a spring having a stiffness k=80N/mk=80N/m.
If the block is given an upward velocity of 0.4 mm // ss when it is 90 mmmm above its equilibrium position, determine the equation which describes the motion of the block measured from the equilibrium position. Assume that positive displacement is measured downward.
Determine the maximum upward displacement of the block measured from the equilibrium position. Assume that positive displacement is measured downward.
Chapter 22 Solutions
EBK ENGINEERING MECHANICS
Ch. 22 - A spring is stretched 175 mm by an 8-kg block. If...Ch. 22 - A spring has a stiffness of 800 N/m. If a 2-kg...Ch. 22 - Prob. 3PCh. 22 - Prob. 4PCh. 22 - Prob. 5PCh. 22 - Prob. 6PCh. 22 - Prob. 7PCh. 22 - Prob. 8PCh. 22 - A 3-kg block is suspended from a spring having a...Ch. 22 - Prob. 10P
Ch. 22 - Prob. 13PCh. 22 - Prob. 14PCh. 22 - Prob. 16PCh. 22 - Prob. 17PCh. 22 - A uniform board is supported on two wheels which...Ch. 22 - Prob. 24PCh. 22 - Prob. 30PCh. 22 - Prob. 31PCh. 22 - Prob. 32PCh. 22 - Determine the differential equation of motion of...Ch. 22 - Prob. 36PCh. 22 - If the block-and-spring model is subjected to the...Ch. 22 - A block which has a mass m is suspended from a...Ch. 22 - A 4-lb weight is attached to a spring having a...Ch. 22 - A 4-kg block is suspended from a spring that has a...Ch. 22 - A 5-kg block is suspended from a spring having a...Ch. 22 - Prob. 48PCh. 22 - The light elastic rod supports a 4-kg sphere. When...Ch. 22 - Find the differential equation for small...Ch. 22 - Prob. 52PCh. 22 - The fan has a mass of 25 kg and is fixed to the...Ch. 22 - In Prob. 22-53 , determine the amplitude of...Ch. 22 - Prob. 55PCh. 22 - Prob. 56PCh. 22 - Prob. 57PCh. 22 - Prob. 58PCh. 22 - Prob. 59PCh. 22 - Prob. 60PCh. 22 - Prob. 61PCh. 22 - Prob. 62PCh. 22 - Prob. 65PCh. 22 - Determine the magnification factor of the block,...Ch. 22 - Prob. 67PCh. 22 - The 200-lb electric motor is fastened to the...Ch. 22 - Prob. 70PCh. 22 - Prob. 72PCh. 22 - Prob. 73PCh. 22 - Prob. 74PCh. 22 - Prob. 75PCh. 22 - Prob. 76PCh. 22 - Prob. 79P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- . A 500-kg is traveling at a speed of 45 m/s when it encounters a bump in the road as illustrated. The static deflection of the suspension is 7.2 mm. Express the excitation as a function of time in [0;+infinity), and using the response table to determine the vertical displacement of the vehicle,x(t)arrow_forwardA 2-kg block is suspended from a spring having a stiffness of 800 N/m. If the block is given an upward velocity of 4 m/s when it is displaced downward a distance of 150 mm from its equilibrium position, determine the equation which describes the motion. Assume that positive displacement is downward.arrow_forwardA mass that weighs 8 lb stretches a spring 24 inches. The system is acted on by an external force of 4 sin(4t) lb. If the mass is pulled down 6 inches and then released, determine the position of the mass at any time t. Assume that the u-axis is directed downwards and ft = g 32 Express your answer as a linear combination of sin(at) $² and cos(at), where u is in feet and t is in seconds. u(t) = Determine the first four times at which the velocity of the mass is zero. Exclude t = 0 as trivial, and enter exact answers. First zero: t = Third zero: t = Second zero: t = Fourth zero: t =arrow_forward
- The spring constant is k=785 N/m. The spring is unstretched when x=0. Neglect the mass of the pulley, that is, assume that the tension in the rope is the same on both sides of the pulley. The system is released from rest with x=0. Determine x as a function of time.arrow_forwardhelp pleasearrow_forward1. An automobile of mass M=5400 kg is moving at a speed of 30 m/s.The engine is disengaged suddenly at t= 0 sec. Assume that the equation of motion after t-0 is given by 5400 v- dv = -8.276 v-2000 dx Where v= v(t) is the speed (m/sec) of the car at t. The left side represents Mv (dv/dx).The first term on the right side is the aerodynamics drag, \\\\\\\\\|\||\\\|||||| || lland the second term is the rolling resistance of the tires. Calculate how far the car travels until the speed reduces to 15 m/sec.(hint: the equation of motion may be integrated as 5400 v dv 30 = Jdx=x 8.276 v+2000 Evaluate the preceding equation using Simpson rule).arrow_forward
- QUESTION 1 A 10-kg mass is attached to a spring, stretching it 0.7 m from its natural length. The mass is started in motion from the equilibrium position with an initial velocity of 1 m/sec in the upward direction. Find the distance at t=0.5 sec, if the force due to air resistance is -90v N. The initial conditions are x(0) = 0 (the mass starts at the equilibrium position) and i(0) = -1 (the initial velocity is in the negative direction). Use 4 decimal palces.arrow_forwardA spring with a spring constant k of 20 pounds per foot is loaded with a 10-pound weight and allowed to reach equilibrium. It is then displaced 1 foot downward and released. If the weight experiences a retarding force in pounds equal to four times the velocity at every point, find the equation of motion. y(t) = where t is time (in seconds) and y(t) is displacement (in feet).arrow_forwardA spring for which k=750 N/m, is suspended from a fixed support. A mass of 30 kg is attached to its lower end and the system is brought to rest. Find the position of the mass at time t=5 sec if a force equal to 20 sin 2t is applied to it.arrow_forward
- A 4 kg mass suspended from a spring having stiffness of k= 600N/m. if the block is pushed50mm upward from its equilibrium position and then released from rest dertermine the equation which describes the blocks motionarrow_forwardNeglecting the resistance of the medium. Find the displacement in ft after 9 seconds of an 16 lb object attached to the end of a spring. It comes to rest at its equilibrium position, thereby stretching the spring to 12 inches. The object is then pulled down 0.5 ft below its equilibrium position and released att = 0 with an initial velocity of 1 ft/s directed downward.arrow_forwardA 5-kg collar can slide on a frictionless horizontal rod and is attached to a spring of constant k= 125 N/m. It is acted upon by a periodic force of magnitude F = F, cos wt, where Fo= 10 N and w = 5 rad/s. Determine the displacement and velocity of the collar at t = 0.2 s assuming that the initial conditions are zero. F = F, cos wtarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Ch 2 - 2.2.2 Forced Undamped Oscillation; Author: Benjamin Drew;https://www.youtube.com/watch?v=6Tb7Rx-bCWE;License: Standard youtube license