Concept explainers
A spring is stretched 175 mm by an 8-kg block. If the block is displaced 100 mm downward from its equilibrium position and given a downward velocity of 1.50 m/s, determine the differential equation which describes the motion. Assume that positive displacement is downward. Also, determine the position of the block when t = 0.22 s.
The differential equation which describes the motion and the position of the block when
Answer to Problem 1P
The differential equation which describes the motion is
Explanation of Solution
Given:
The spring stretched,
The mass of the block,
Distance moved below from equilibrium position,
The downward velocity of block,
The given time,
Show the free body diagram of theblock as in Figure (1).
Conclusion:
Refer Figure (1),
Resolve forces along
Here, acceleration due to gravity is
Substitute
Express the natural frequency.
Substitute
Substitute
Hence, the differential equation which describes the motion is
Write the solution in Equation (IV) in the form of differential equation.
Here, constants are
Differentiate Equation (V) with respect to time to get,
Write the boundary conditions:
At
The conditions are:
Apply the boundary conditions in Equation (V),
Apply the boundary conditions in Equation (VI),
Substitute
Substitute
Hence, the position of the block when
Want to see more full solutions like this?
Chapter 22 Solutions
EBK ENGINEERING MECHANICS
- A 9-kg block is suspended from a spring having a stiffness of k = 200 N/m. If the block is given an upward velocity of 0.4 m/s when it is 95 mm above its equilibrium position, determine the maximum upward displacement of the block measured from the equilibrium position. Assume that positive displacement is downward.arrow_forwardAn 8-kgkg block is suspended from a spring having a stiffness k=80N/mk=80N/m. If the block is given an upward velocity of 0.4 mm // ss when it is 90 mmmm above its equilibrium position, determine the equation which describes the motion of the block measured from the equilibrium position. Assume that positive displacement is measured downward. Determine the maximum upward displacement of the block measured from the equilibrium position. Assume that positive displacement is measured downward.arrow_forwardGiven that the spring is originally compressed 15 cm and has a modulus of 876 N/m. By using an appropriate method, predict the speed of A after it has descended 1.2 m.arrow_forward
- help pleasearrow_forwardA mass that weighs 8 lb stretches a spring 24 inches. The system is acted on by an external force of 4 sin(4t) lb. If the mass is pulled down 6 inches and then released, determine the position of the mass at any time t. Assume that the u-axis is directed downwards and ft = g 32 Express your answer as a linear combination of sin(at) $² and cos(at), where u is in feet and t is in seconds. u(t) = Determine the first four times at which the velocity of the mass is zero. Exclude t = 0 as trivial, and enter exact answers. First zero: t = Third zero: t = Second zero: t = Fourth zero: t =arrow_forwardThe spring constants are k1 = 200 N / m, k2 = 250N / m and the unstretched lengths of the springs are 0.9 m. The mass of the bracelet is 4 kg. What is the total potential energy at point B with respect to the given datum line when the bracelet left from A reaches point B? Neglect the dimensions of the bracelet. (L1 = 0.90 m, L2 = 1.80 m, h1 = 1.20 m and h2 = 2.40 m)arrow_forward
- The 10 N cylinder moves in a frictionless pipe. Spring constants are k1 = 150 N / m and k2 = 200 N / m. When the system is at rest, d = 0.5 m. (d is the distance from the right end of the arc k2). The system rotates around a fixed z-axis. Find the constant velocity of the cylinder for d = 0.20 m?arrow_forwardIf there is n friction in the system, the Lagrange's equation will be based only on kinetic energy and protentional energy only. Select one: O True O False III Oarrow_forwardQUESTION 1 A 10-kg mass is attached to a spring, stretching it 0.7 m from its natural length. The mass is started in motion from the equilibrium position with an initial velocity of 1 m/sec in the upward direction. Find the distance at t=0.5 sec, if the force due to air resistance is -90v N. The initial conditions are x(0) = 0 (the mass starts at the equilibrium position) and i(0) = -1 (the initial velocity is in the negative direction). Use 4 decimal palces.arrow_forward
- The weight of the spring held follower AB is 0.367 kg and moves back and forth as its end rolls on the contoured surface of the cam, where r = 0.2 ft and z = (0.1sin20) ft. If the cam is rotating at a constant rate of 6 rad/s, determine the force, in lb, at the end A of the follower where 0 = 45°. In this position, the spring is compressed 0.4 ft. Neglect friction at the bearing C. Round your answer to 3 decimal places. 6 = 6 rad/s 0.2 ftX z = 0.1 sin 20 Z A k = 12 lb/ft с Barrow_forwardA spring is such that a 5 -lb weight stretches it 6 in. The 5 -lb weight is attached, the spring reaches equilibrium, then the weight is pulled down 3 in. below the equilibrium point and started off with an upward velocity of 6ft/sec. Find an equation giving the position of the weight at all subsequent timesarrow_forwardSolve (2) pleasearrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY