Concept explainers
Write an equation for the reaction of chloroacetic acid
Interpretation:
The equation for the reaction between chloroacetic acid and trimethylamine, the equilibrium constant and concentration at equilibrium for the reaction should be determined.
Concept introduction:
The relationship between the concentration of products and reactants at equilibrium for a general reaction:
Where A, B, C, and D represents chemical species and a, b, c, and d are the coefficients for balanced reaction.
The equilibrium expression, Kc for reversible reaction is determined by multiplying the concentrations of products together and divided by the concentrations of the reactants. Each concentration is raised to the power that is equal to the coefficient in the balanced reaction. So, the expression is:
Square brackets represent the concentration.
Answer to Problem 60QAP
The reaction between chloroacetic acid and trimethylamine is:
The concentration is
Explanation of Solution
The reaction between chloroacetic acid and trimethylamine is neutralization reaction.
The neutralization reaction between chloroacetic acid and trimethylamine is:
In order to determine the value of equilibrium constant of the reaction, the dissociation of chloroacetic acid and trimethylamine in accordance to Arrhenius view may be written as:
Since,
So,
As on reversing the reaction, the value of constant of reversed reaction is the invert value of K.
When the reaction is expressed as the sum of two or more reactions the value of equilibrium constant, K for the final reaction is determined by the product of the equilibrium constant of individual reactions.
Adding equation (1), (2), and (3):
Thus, K =
The concentration at equilibrium is determined by constructing the ICE table for the reaction:
The equilibrium constant for the above reaction is:
Substituting the values:
On solving the quadratic equation:
Thus, the concentration is
The reaction between chloroacetic acid and trimethylamine is:
The concentration is
Want to see more full solutions like this?
Chapter 22 Solutions
Chemistry: Principles and Reactions
- Show work. Don't give Ai and copied solutionarrow_forwardNonearrow_forwardUnshared, or lone, electron pairs play an important role in determining the chemical and physical properties of organic compounds. Thus, it is important to know which atoms carry unshared pairs. Use the structural formulas below to determine the number of unshared pairs at each designated atom. Be sure your answers are consistent with the formal charges on the formulas. CH. H₂ fo H2 H The number of unshared pairs at atom a is The number of unshared pairs at atom b is The number of unshared pairs at atom c is HC HC HC CH The number of unshared pairs at atom a is The number of unshared pairs at atom b is The number of unshared pairs at atom c isarrow_forward
- Draw curved arrows for the following reaction step. Arrow-pushing Instructions CH3 CH3 H H-O-H +/ H3C-C+ H3C-C-0: CH3 CH3 Harrow_forward1:14 PM Fri 20 Dec 67% Grade 7 CBE 03/12/2024 (OOW_7D 2024-25 Ms Sunita Harikesh) Activity Hi, Nimish. When you submit this form, the owner will see your name and email address. Teams Assignments * Required Camera Calendar Files ... More Skill: Advanced or complex data representation or interpretation. Vidya lit a candle and covered it with a glass. The candle burned for some time and then went off. She wanted to check whether the length of the candle would affect the time for which it burns. She performed the experiment again after changing something. Which of these would be the correct experimental setup for her to use? * (1 Point) She wanted to check whether the length of the candle would affect the time for which it burns. She performed the experiment again after changing something. Which of these would be the correct experimental setup for her to use? A Longer candle; No glass C B Longer candle; Longer glass D D B Longer candle; Same glass Same candle; Longer glassarrow_forwardBriefly describe the compounds called carboranes.arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningOrganic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning