BIOCHEM-ACHIEVE(FIRST DAY DISCOUNTED)
BIOCHEM-ACHIEVE(FIRST DAY DISCOUNTED)
9th Edition
ISBN: 2818000069358
Author: BERG
Publisher: MAC HIGHER
Question
Book Icon
Chapter 22, Problem 59P
Interpretation Introduction

(a)

Interpretation:

The effect of soraphen A and its varying concentration on the fatty acid synthesis should be determined.

Concept introduction:

Acetyl-CoA carboxylase (ACC) is a biotin-dependent enzyme, which catalyzes the conversion of acetyl-CoA into malonyl-CoA, in the presence of bicarbonate ion. It has two catalytic activities, carboxyltransferase and biotin carboxylase. This enzyme is found in the chloroplasts of the plants, and endoplasmic reticulum of the animals. The main motive of ACC is to synthesize malonyl CoA for the synthesis of fatty acids.

Interpretation Introduction

(b)

Interpretation:

The effect of soraphen A on fatty acid oxidation must be determined.

Concept introduction:

Acetyl-CoA carboxylase (ACC) is a biotin-dependent enzyme, which catalyzes the conversion of acetyl-CoA into malonyl-CoA, in the presence of bicarbonate ion. It has two catalytic activities, carboxyltransferase and biotin carboxylase. This enzyme is found in the chloroplasts of the plants, and endoplasmic reticulum of the animals. The main motive of ACC is to synthesize malonyl CoA for the synthesis of fatty acids.

Interpretation Introduction

(c)

Interpretation:

The results of graph B should be explained keeping in mind that sorpahen A inhibits acetyl CoA carboxylase.

Concept introduction:

Acetyl-CoA carboxylase (ACC) is a biotin-dependent enzyme, which catalyzes the conversion of acetyl-CoA into malonyl-CoA, in the presence of bicarbonate ion. It has two catalytic activities, carboxyltransferase and biotin carboxylase. This enzyme is found in the chloroplasts of the plants, and endoplasmic reticulum of the animals. The main motive of ACC is to synthesize malonyl CoA for the synthesis of fatty acids.

Interpretation Introduction

(d)

Interpretation:

The effect on phospholipid synthesis by inhibition of carboxylase must be determined.

Concept introduction:

Acetyl-CoA carboxylase (ACC) is a biotin-dependent enzyme, which catalyzes the conversion of acetyl-CoA into malonyl-CoA, in the presence of bicarbonate ion. It has two catalytic activities, carboxyltransferase and biotin carboxylase. This enzyme is found in the chloroplasts of the plants, and endoplasmic reticulum of the animals. The main motive of ACC is to synthesize malonyl CoA for the synthesis of fatty acids.

Interpretation Introduction

(e)

Interpretation:

The effect of phospholipid synthesis on cell’s viability must be determined.

Concept introduction:

Acetyl-CoA carboxylase (ACC) is a biotin-dependent enzyme, which catalyzes the conversion of acetyl-CoA into malonyl-CoA, in the presence of bicarbonate ion. It has two catalytic activities, carboxyltransferase and biotin carboxylase. This enzyme is found in the chloroplasts of the plants, and endoplasmic reticulum of the animals. The main motive of ACC is to synthesize malonyl CoA for the synthesis of fatty acids.

Interpretation Introduction

(f)

Interpretation:

The result of soraphen A on cancer cell viability should be determined.

Concept introduction:

Acetyl-CoA carboxylase (ACC) is a biotin-dependent enzyme, which catalyzes the conversion of acetyl-CoA into malonyl-CoA, in the presence of bicarbonate ion. It has two catalytic activities, carboxyltransferase and biotin carboxylase. This enzyme is found in the chloroplasts of the plants, and endoplasmic reticulum of the animals. The main motive of ACC is to synthesize malonyl CoA for the synthesis of fatty acids.

Blurred answer
Students have asked these similar questions
Biochemistry What is the process of "transamination" in either the muscles or the liver, that involves keto acid or glutamic acid? Please explain how the steps work. Thank you!
Biochemistry Please help. Thank you What is the importance of glutamic acid in the metabolism of nitrogen from amino acids? (we know therole; it’s used to remove the nitrogen from amino acids so that the remaining carbon skeleton can bebroken down by the “usual” pathways, but what is the important, unique role that only glutamicacid/glutamate can do?)
Biochemistry Please help. Thank you When carbamyl phosphate is joined to L-ornathine, where does the energy for the reaction come from?
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Biochemistry
    Biochemistry
    ISBN:9781305577206
    Author:Reginald H. Garrett, Charles M. Grisham
    Publisher:Cengage Learning
Text book image
Biochemistry
Biochemistry
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Cengage Learning