Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 22, Problem 45Q
To determine
Whether the statement of the student is correct or not.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I answer is not 100, I also tried 21. I need help! Thank you!
Are the galaxies red-shifting or blue-shifting? Explain. (You may find the big-bang theory helpful). Andromeda galaxy is currently approaching our galaxy with a radial velocity of 266 km/sec. How far is our galaxy from Andromeda? (Hubble’s constant, H, is 73 km/sec/MParsec). When can the two galaxies be anticipated to collide?
The figure below shows the spectra of two galaxies A and B.
Please can i get help with this questions below:
1. Which of these galaxies has ongoing star formation? How can you tell?2. One of these galaxies has Hubble type E3 while the other is SBb. Which is which? What does the 3 inE3 tell you about the galaxy? What does the SB in SBb tell you about the galaxy?3. What effects would dust have on the two spectra?4. Which galaxy would you expect to have more far-infrared emission? Expl
Chapter 22 Solutions
Universe: Stars And Galaxies
Ch. 22 - Prob. 1QCh. 22 - Prob. 2QCh. 22 - Prob. 3QCh. 22 - Prob. 4QCh. 22 - Prob. 5QCh. 22 - Prob. 6QCh. 22 - Prob. 7QCh. 22 - Prob. 8QCh. 22 - Prob. 9QCh. 22 - Prob. 10Q
Ch. 22 - Prob. 11QCh. 22 - Prob. 12QCh. 22 - Prob. 13QCh. 22 - Prob. 14QCh. 22 - Prob. 15QCh. 22 - Prob. 16QCh. 22 - Prob. 17QCh. 22 - Prob. 18QCh. 22 - Prob. 19QCh. 22 - Prob. 20QCh. 22 - Prob. 21QCh. 22 - Prob. 22QCh. 22 - Prob. 23QCh. 22 - Prob. 24QCh. 22 - Prob. 25QCh. 22 - Prob. 26QCh. 22 - Prob. 27QCh. 22 - Prob. 28QCh. 22 - Prob. 29QCh. 22 - Prob. 30QCh. 22 - Prob. 31QCh. 22 - Prob. 32QCh. 22 - Prob. 33QCh. 22 - Prob. 34QCh. 22 - Prob. 35QCh. 22 - Prob. 36QCh. 22 - Prob. 37QCh. 22 - Prob. 38QCh. 22 - Prob. 39QCh. 22 - Prob. 40QCh. 22 - Prob. 41QCh. 22 - Prob. 42QCh. 22 - Prob. 43QCh. 22 - Prob. 44QCh. 22 - Prob. 45QCh. 22 - Prob. 46QCh. 22 - Prob. 47QCh. 22 - Prob. 48QCh. 22 - Prob. 49QCh. 22 - Prob. 50Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Suppose three stars lie in the disk of the Galaxy at distances of 20,000 light-years, 25,000 light-years, and 30,000 light-years from the galactic center, and suppose that right now all three are lined up in such a way that it is possible to draw a straight line through them and on to the center of the Galaxy. How will the relative positions of these three stars change with time? Assume that their orbits are all circular and lie in the plane of the disk.arrow_forwardHow astronomers determine the distance of a galaxy? Explain.arrow_forwardThe Tully-Fischer method relies on being able to relate the mass of a galaxy to its rotation velocity. Stars in the outer-most regions of the Milky Way galaxy, located at a distance of 50 kpc from the galactic centre, are observed to orbit at a speed vrot = 250 km s−1. Using Kepler’s 3rd Law, determine the mass in the Milky Way that lies interior to 50 kpc. Express your answer in units of the Solar mass.arrow_forward
- The type of galaxy that consists almost entirely of old stars and is thus less blue (more yellow and reddish) than the other types is [Select] and our Milky Way Galaxy is a [Select] barred spiral elliptical irregular F3 [Select] जी 4 4») Q Search DII de in % 5 spiral all of these galaxy types consist mostly of very old stars A 2 LO F7 & 7 PrtScn 8 Home P Endarrow_forwardA galaxy's rotation curve is a measure of the orbital speed of stars as a function of distance from the galaxy's centre. The fact that rotation curves are primarily flat at large galactocen- tric distances (vrot(r) ~ constant) is the most common example of why astronomer's believe dark matter exists. Let's work out why! Assuming that each star in a given galaxy has a circular orbit, we know that the accelera- tion due to gravity felt by each star is due to the mass enclosed within its orbital radius r and equal to v?/r. Here, ve is the circular orbit velocity of the star. (a) Show that the expected relationship between ve and r due to the stellar halo (p(r) xr-3.5) does not produce a flat rotation curve. (b) Show that a p(r) ∞ r¯² density profile successfully produces a flat ro- tation curve and must therefore be the general profile that dark matter follows in our galaxy.arrow_forwardThe figure below shows the spectra of two galaxies A and B.arrow_forward
- In the reading, you were told that there were roughly 10,000 galaxies in the image of the Hubble Ultra Deep Field alone. The image is roughly 10 square arcminutes and there are roughly 1.5*10^8 square arcminutes composing the entire sky. With that in mind and assuming that the Hubble Ultra Deep Field represents an average part of the sky, roughly how many galaxies may exist in the observable universe? (Please include commas for every factor of 1,000; for example 2,343,567,890)arrow_forwardChoose the statement that is NOT true of a galaxy. O Galaxies take different shapes depending on how the stars are distributed and oriented. O Agreat island of stars held together by gravity. All galaxies are basically of the same shape and consist mainly of a discs and a halos. All the stars in a galary orbit a common centerarrow_forwardYou observe the H-alpha line of Hydrogen in a distant galaxy to have a wavelength of 754.4 nm. What is the radial velocity of the galaxy? Hint: The rest wavelength of H-alpha is 656 nm. I have to use the forumla mentioned in the photo I shared with this post.arrow_forward
- helparrow_forwardThe Tully-Fischer method relies on being able to relate the mass of a galaxy to its rotation velocity. Stars in the outer-most regions of the Milky Way galaxy, located at a distance of 50 kpc from the galactic centre, are observed to orbit at a speed vrot determine the mass in the Milky Way that lies interior to 50 kpc. Express your answer in units of the Solar mass. 250 km s-1. Using Kepler's 3rd Law,arrow_forwardAnother way of explaining a word is to enumerate the different parts of which it ismade: “X consists of Y and Z”. Define the following words in this way.Solar system, a telescope, galaxy, binary system, open clusterarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage LearningStars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning