Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 22, Problem 29Q
To determine
To show:
That the form of the Kepler’s third law,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
You observe a star orbiting in the outer parts of a galaxy. The distance to this galaxy is known, and you are able to take a spectra of this star and determine its velocity. The star is 19 kpc from the galaxy center and moving in a circular orbit with speed 369 km/s. Compute the total mass of the galaxy internal to the star's orbit. You will get a large number; express it in scientific notation and in units of solar masses [e.g., 4.2e10].
[Hint: there is a Box in Chapter 22 of your textbook that will be of help. See also the course formula sheet.]
(a) Estimate the height (z) above or below the Galactic plane for the globular cluster
M13 (1,b = 59°, 40.9°) and the Orion Nebula (1,b = 209°, -19.4°). M13 and the Orion
Nebula are 7 kpc and 450 pc away from Earth respectively.
(b) To which components of the Galaxy do these objects probably belong? Explain your
answers.
The difference in absolute magnitude between two objects at the same distance is related to their fluxes by the flux-magnitude relation.
FA
FB
= 2.51(MB − MA)
A distant galaxy contains a type I classical Cepheid whose period results in an absolute magnitude estimate of
−6.3.
If this star were placed next to our Sun
(M = +4.8)
and you observed them both from the same distance, how much more flux would the Cepheid emit than the Sun?
FCepheid
FSun
=
If a galaxy contains a supernova that at its brightest has an apparent magnitude of +11, how far away is the galaxy? Assume that the absolute magnitude of the supernova is
−18.
Hint:
Use the magnitude-distance formula:
d = 10(mV − MV + 5)/5 .
The hydrogen Balmer line H? has a wavelength of 486.1 nm. It is shifted to 559.7 nm in a quasar's spectrum. What is the redshift of this quasar? (Hint: What is Δ??)
Chapter 22 Solutions
Universe: Stars And Galaxies
Ch. 22 - Prob. 1QCh. 22 - Prob. 2QCh. 22 - Prob. 3QCh. 22 - Prob. 4QCh. 22 - Prob. 5QCh. 22 - Prob. 6QCh. 22 - Prob. 7QCh. 22 - Prob. 8QCh. 22 - Prob. 9QCh. 22 - Prob. 10Q
Ch. 22 - Prob. 11QCh. 22 - Prob. 12QCh. 22 - Prob. 13QCh. 22 - Prob. 14QCh. 22 - Prob. 15QCh. 22 - Prob. 16QCh. 22 - Prob. 17QCh. 22 - Prob. 18QCh. 22 - Prob. 19QCh. 22 - Prob. 20QCh. 22 - Prob. 21QCh. 22 - Prob. 22QCh. 22 - Prob. 23QCh. 22 - Prob. 24QCh. 22 - Prob. 25QCh. 22 - Prob. 26QCh. 22 - Prob. 27QCh. 22 - Prob. 28QCh. 22 - Prob. 29QCh. 22 - Prob. 30QCh. 22 - Prob. 31QCh. 22 - Prob. 32QCh. 22 - Prob. 33QCh. 22 - Prob. 34QCh. 22 - Prob. 35QCh. 22 - Prob. 36QCh. 22 - Prob. 37QCh. 22 - Prob. 38QCh. 22 - Prob. 39QCh. 22 - Prob. 40QCh. 22 - Prob. 41QCh. 22 - Prob. 42QCh. 22 - Prob. 43QCh. 22 - Prob. 44QCh. 22 - Prob. 45QCh. 22 - Prob. 46QCh. 22 - Prob. 47QCh. 22 - Prob. 48QCh. 22 - Prob. 49QCh. 22 - Prob. 50Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Figure 2 shows the "rotation curve" of NGC 2742. It plots the “radial velocity (V)" (how fast material is moving either toward or away from us) that is measured for objects at different distances (R = radius") from the center of the galaxy. The center of the galaxy is at 0 kpc (kiloparsecs) with a speed of 9 km/sec away from us. (These velocities have been corrected for the observed tilt of the galaxy and represent true orbital velocities of the stars and gas.) 200 100 U4779 -100 As you can see, one side of the galaxy is moving with a negative velocity (spinning toward us), while the other side has a positive velocity (spinning away from us). Using Newton's gravity equation, we will be able to determine the gravitational mass of the entire galaxy and how the mass varies versus distance from the galaxy's center. -200 -8 8 -4 Radius (kpc) Read the following text carefully and follow the instructions: Select five radii spaced evenly from 0-10 kpc across the galaxy. Your selections should…arrow_forwardA galaxy with a spherically symmetric distribution of matter has a mass density profile of the type p(r) ∞ 1/r, where r is the radial coordinate from the centre of the galaxy. To what type of circular velocity (r) does this correspond? Select one: a. (r) O b. c. O d. (r) ~ r (r) ~ √r (r): = constantarrow_forwardn(r) = 1ge where r represents the distance from the centre of the Galaxy, Ro is the distance of the Sun from the centre of the Galaxy, Ra is the typical size of disk and no is the stellar density of disk at the position of the Sun. All distances are expressed in kpc. An astronomer observes the center of the Galaxy within a small field of view. We take a particular type of Red giant stars as the standard candles for the observation with approximately constant absolute magnitude of M = -0.2, (a) A telescope has a limiting magnitude of m = 18. Calculate the maximum distance to which this telescope can detect these red giant stars. For simplicity we ignore the presence of interstellar medium so there is no extinction. (b) Assume an extinction of 0.7 mag/kpc for the interstellar medium. Repeat the calculation as done in the part 5a and obtain a rough number for the maximum distance these red giant stars can be observed. (c) Give an expression for the number of these red giant stars per mag-…arrow_forward
- Observations indicate that each galaxy contains a supermassive black hole at its center. These black holes can be hundreds of thousands to billions of times more massive than the Sun. Astronomers estimate the size of such black holes using multiple methods. One method, using the orbits of stars around the black hole, is an application of Kepler's third law. The mass of the black hole can be found by using the given equation, where a is the semi-major axis in astronomical units, P is the period in years, and k is a constant with a value of 1 Mo X year²/ AU³. a³ M = k- p² What is the mass of a supermassive black hole if a star orbits it with a semimajor axis of 959 AU and a period of 13.3 years? mass: Another method measures the speed of gas moving past the black hole. In the given equation, v is the velocity of the gas (in kilometers per second), r is the distance of the gas cloud from the black hole (in kilometers), and G is Newton's gravitational constant. In this equation, G = 1.33 ×…arrow_forwardIt can be shown that if an object orbiting a star of mass M in a circular orbit of radius R has speed v, then Rv? M Suppose a star orbits the center of the galaxy it is contained in with an orbit that is nearly circular with radius 18 R = 2.5 x 10 and velocity v = 230 km/s. Use the result above to estimate the mass of the portion of the galaxy inside the star's orbit (place all of this mass at the center of the orbit). Mass =arrow_forwardThe best parallaxes obtained with Hipparcos have an accuracy of 0.001 arcsec. If you want to measure the distance to a star with an accuracy of 10%, its parallax must be 10 times larger than the typical error. How far away can you obtain a distance that is accurate to 10% with Hipparcos data? The disk of our Galaxy is 100,000 light-years in diameter. What fraction of the diameter of the Galaxy’s disk is the distance for which we can measure accurate parallaxes?arrow_forward
- The best evidence for a black hole at the center of the Galaxy also comes from the application of Kepler’s third law. Suppose a star at a distance of 20 light-hours from the center of the Galaxy has an orbital speed of 6200 km/s. How much mass must be located inside its orbit?arrow_forwardSuppose three stars lie in the disk of the Galaxy at distances of 20,000 light-years, 25,000 light-years, and 30,000 light-years from the galactic center, and suppose that right now all three are lined up in such a way that it is possible to draw a straight line through them and on to the center of the Galaxy. How will the relative positions of these three stars change with time? Assume that their orbits are all circular and lie in the plane of the disk.arrow_forwardA Cepheid variable in the Andromeda galaxy has a period of 22 days and a mean apparent magnitude of19.5.(a) Calculate the distance modulus of the Andromeda galaxy.(b) Given that the Andromeda galaxy is approaching the Milky Way with a velocity of 119 km/s, roughlyestimate how long before these two galaxies collide? Provide your answer in years.arrow_forward
- Suppose there exists a hypothetical galaxy with mass MG around the center of which a solar system with mass Ms orbits with period T and radius r. Use the formula T = 2n(r³/GMG)¹/2 to calculate T if: MG = 1 x 1040 kg Ms = 2 x 1028 kg • R = 2.5 x 1020 m . .arrow_forwardIn the reading, you were told that there were roughly 10,000 galaxies in the image of the Hubble Ultra Deep Field alone. The image is roughly 10 square arcminutes and there are roughly 1.5*10^8 square arcminutes composing the entire sky. With that in mind and assuming that the Hubble Ultra Deep Field represents an average part of the sky, roughly how many galaxies may exist in the observable universe? (Please include commas for every factor of 1,000; for example 2,343,567,890)arrow_forwardConsider an E6 galaxy whose surface brightness is given by the law I(0) = I (0) e-(0/0)1/2, where is the angular distance from the centre of the galaxy along the semimajor axis, I(0) is the central brightness and 0. is the scale angle (i.e. angle at which the surface brightness falls to the value I(0)/e). Calculate the numerical value of its total flux density in units of 1(0)02.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning