Concept explainers
(a)
To calculate:
The Schwarzschild radius of a super massive black hole of mass
Answer to Problem 39Q
Radius of a super massive black hole of mass kilometers =
Radius of a super massive black hole of mass astronomical units =
Explanation of Solution
Given:
Mass of the black hole =
Formula used:
The Schwarzschild radius can be calculated using the following:
Where, G is the gravitational constant, M is mass, c is the
Calculation:
Substitute the values:
Conclusion:
The radius of a supermassive black hole of mass kilometers =
The radius of a supermassive black hole of mass astronomical units =
(b)
To calculate:
The angular diameter in arcseconds of the black hole at a distance of
Answer to Problem 39Q
Angular diameter in arcseconds of the black hole at a distance of
Explanation of Solution
Given:
Distance from Earth to the galactic center =
Formula used:
Calculation:
Conclusion:
Angular diameter in arcseconds of the black hole at a distance of
(c)
To calculate:
The angular diameter in arcseconds of the black hole when seen from a distance of
Whether or not, it will be discernible to the naked eye.
Answer to Problem 39Q
The angular diameter of the black hole at a distance of
Yes, the naked eye can discern the black hole.
Explanation of Solution
Given:
Distance from which the black hole is observed =
The field of view of a naked eye =
Formula used:
Calculation:
As
Conclusion:
Angular diameter of the black hole at a distance of
As
Want to see more full solutions like this?
Chapter 22 Solutions
Universe: Stars And Galaxies
- The best parallaxes obtained with Hipparcos have an accuracy of 0.001 arcsec. If you want to measure the distance to a star with an accuracy of 10%, its parallax must be 10 times larger than the typical error. How far away can you obtain a distance that is accurate to 10% with Hipparcos data? The disk of our Galaxy is 100,000 light-years in diameter. What fraction of the diameter of the Galaxy’s disk is the distance for which we can measure accurate parallaxes?arrow_forwardConsider the following five kinds of objects: open cluster, giant molecular cloud, globular cluster, group of O and B stars, and planetary nebulae. A. Which occur only in spiral arms? B. Which occur only in the parts of the Galaxy other than the spiral arms? C. Which are thought to be very young? D. Which are thought to be very old? E. Which have the hottest stars?arrow_forwardThe Tully-Fischer method relies on being able to relate the mass of a galaxy to its rotation velocity. Stars in the outer-most regions of the Milky Way galaxy, located at a distance of 50 kpc from the galactic centre, are observed to orbit at a speed vrot = 250 km s−1. Using Kepler’s 3rd Law, determine the mass in the Milky Way that lies interior to 50 kpc. Express your answer in units of the Solar mass.arrow_forward
- An astronomical image shows two objects that have the same apparent magnitude, i.e., the same brightness. However, spectroscopic follow up observations indicate that while one is a star that is within our galaxy, at a distance dgal away, and has the same luminosity as the Sun, the other is a quasar and has 100x the luminosity of the entire Milky Way galaxy. What is the distance to the quasar? (You may assume, for this rough calculation, that the Milky Way has 1011 stars and that they all have the luminosity as the Sun.) Give your response in Mpc. Value: dgal = 49 pcarrow_forwardAn observational survey of distant galaxies is undertaken that involves measuring their distances using cepheid variables and red-shifts using spectroscopy. Explain how cepheid variables can be used to measure the distances to galaxies. A spectral line is observed whose wavelength in the laboratory is de length of this spectral line observed in each galaxy, Xo, is listed in the table, along with the distance, d, to the galaxy. Determine the red-shift and the recession velocity of each galaxy and tabulate your results by making a copy of the table and filling in the blank spaces. Sketch a Hubble diagram using your results and determine the value of the Hubble constant Ho in units of km s-1 Mpc. 650 nm. The wave- Galaxy 1 652.69 Galaxy 2 Galaxy 3 Galaxy 4 Galaxy 5 653.01 do (nm) d (Mpc) 658.54 662.18 681.63 17 19 54 77 200 v (km s-1)arrow_forwardSuppose a quasar is shining with a luminosity L. What is the approximate minimal mass of the black hole? (If the black hole had a lower mass than this, the pressure in the material would overcome the gravity of the black hole and the material would be blown apart.) Give your answer in solar masses, in scientific notation to one significant figure (no decimal places). Value: L=1×10^12Lsun Suppose the quasar in the previous problem is 10% efficient at turning rest mass into energetic photons, according to Einstein's equation E=mc2. What is the necessary rate of accretion of mass onto this black hole, to sustain its luminosity of 1* 1012 solar luminosities -- i.e. how much mass must be 'fed' to this black hole to keep the AGN shining so brightly? Give your response in units of solar masses of material per year, with one decimal place.arrow_forward
- Question 2: apparent magnitude my 1 = 305.9, b = −44.9 and is d=4.5 kpc from the Sun. a.) The integrated light from the Milky Way globular cluster NGC 104 has an 4.03 mag and absolute magnitude My -9.52 mag. It is located at b.) = = Estimate the amount of extinction between the Sun and 47 Tucanae in magnitudes. What does this value of extinction mean for the amount of attenuation by dust between Earth and NGC 104?.arrow_forwardQuestion A1 a) The Large Magellanic Cloud (LMC) is a galaxy in the vicinity of the Milky Way. It is at a distance of 50 kpc, and has a size across of 9.86 kpc. Consider a star similar to Vega (absolute magnitude M = 0.58) which is at the edge of the LMC as seen on the sky. What is its apparent magnitude? Show your calculation. b) A second similar star is observed near the centre of the LMC as seen on the sky with an observed apparent magnitude of m = 20.3. Is this consistent with the star being a member of the LMC? Explain your reasoning. c) An observational study has derived a map of the extinction Ay across the LMC, and shown that its average value is 0.38, with a standard deviation of 0.57. For the star discussed in part (b), if extinction is taken into account, does your conclusion about the star's membership of the LMC change? Explain your reasoning. You may assume that the star may suffer the full (positive) range of extinction found in the study of the LMC. d) Which other…arrow_forward(a) Estimate the height (z) above or below the Galactic plane for the globular cluster M13 (1,b = 59°, 40.9°) and the Orion Nebula (1,b = 209°, -19.4°). M13 and the Orion Nebula are 7 kpc and 450 pc away from Earth respectively. (b) To which components of the Galaxy do these objects probably belong? Explain your answers.arrow_forward
- You observe the H-alpha line of Hydrogen in a distant galaxy to have a wavelength of 754.4 nm. What is the radial velocity of the galaxy? Hint: The rest wavelength of H-alpha is 656 nm. I have to use the forumla mentioned in the photo I shared with this post.arrow_forwardAssume that we have measured the distance to a close by galaxy, with apparent magnitude m1 = 6, to be d1 = 1Mpc. We now assume that all galaxies are similar and have therefore the same intrinsic or absolute, luminosity. Then measuring the apparent magnitude of a second galaxy to be m2 = 11, estimate the distance to that galaxy. Please answer within 90 minutes.arrow_forwardhelp asaparrow_forward
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning