(a) Interpretation: Each binary hydride should be identified as ionic, covalent or interstitial. Concept introduction: The location of each element in the periodic table determines the formula of the hydride it forms. Alkali metals form ionic hydrides and have the formula AH . Transition elements form interstitial hydrides and have no definite stoichiometric formula, AH x . Covalent hydrides are formed by nonmetals and the formula depends on their group in periodic table.
(a) Interpretation: Each binary hydride should be identified as ionic, covalent or interstitial. Concept introduction: The location of each element in the periodic table determines the formula of the hydride it forms. Alkali metals form ionic hydrides and have the formula AH . Transition elements form interstitial hydrides and have no definite stoichiometric formula, AH x . Covalent hydrides are formed by nonmetals and the formula depends on their group in periodic table.
Solution Summary: The author explains that each binary hydride should be identified as ionic, covalent or interstitial.
Definition Definition Elements containing partially filled d-subshell in their ground state configuration. Elements in the d-block of the periodic table receive the last or valence electron in the d-orbital. The groups from IIIB to VIIIB and IB to IIB comprise the d-block elements.
Chapter 22, Problem 22.21CP
Interpretation Introduction
(a)
Interpretation:
Each binary hydride should be identified as ionic, covalent or interstitial.
Concept introduction:
The location of each element in the periodic table determines the formula of the hydride it forms. Alkali metals form ionic hydrides and have the formula AH. Transition elements form interstitial hydrides and have no definite stoichiometric formula, AHx. Covalent hydrides are formed by nonmetals and the formula depends on their group in periodic table.
Interpretation Introduction
(b)
Interpretation:
The oxidation state of hydrogen and the other element in compounds (1), (2) and (3) should be determined.
Concept introduction:
In ionic hydrides, hydrogen is in oxidation state and in other types of hydride, hydrogen is in +1 oxidation state.
In the box below, specify which of the given compounds are very soluble in polar aprotic solvents. You may select more than one compound. Choose one or more: NaCl NH4Cl CH3CH2CH2CH2CH2CN CH3CH2OH hexan-2-one NaOH CH3SCH3
On the following structure, select all of the atoms that could ACCEPT a hydrogen bond. Ignore possible complications of aromaticity. When selecting be sure to click on the center of the atom.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.