(a) Interpretation: Whether the hydrogen present as H + , H − or a covalently bonded H in MgH 2 should be determined. Concept introduction: The location of each element in the periodic table determines the formula of the hydride it forms. Alkali metals form ionic hydrides and have the formula AH . Transition elements form interstitial hydrides and have no definite stoichiometric formula, AH x . Covalent hydrides are formed by nonmetals and the formula depends on their group in the periodic table.
(a) Interpretation: Whether the hydrogen present as H + , H − or a covalently bonded H in MgH 2 should be determined. Concept introduction: The location of each element in the periodic table determines the formula of the hydride it forms. Alkali metals form ionic hydrides and have the formula AH . Transition elements form interstitial hydrides and have no definite stoichiometric formula, AH x . Covalent hydrides are formed by nonmetals and the formula depends on their group in the periodic table.
Solution Summary: The author explains that the location of each element in the periodic table determines the formula of the hydrogen it forms.
Definition Definition Elements containing partially filled d-subshell in their ground state configuration. Elements in the d-block of the periodic table receive the last or valence electron in the d-orbital. The groups from IIIB to VIIIB and IB to IIB comprise the d-block elements.
Chapter 22, Problem 22.58SP
Interpretation Introduction
(a)
Interpretation:
Whether the hydrogen present as H+, H− or a covalently bonded H in MgH2 should be determined.
Concept introduction:
The location of each element in the periodic table determines the formula of the hydride it forms. Alkali metals form ionic hydrides and have the formula AH. Transition elements form interstitial hydrides and have no definite stoichiometric formula, AHx. Covalent hydrides are formed by nonmetals and the formula depends on their group in the periodic table.
Interpretation Introduction
(b)
Interpretation:
Whether the hydrogen present as H+, H− or a covalently bonded H in PH3 should be determined.
Concept introduction:
The location of each element in the periodic table determines the formula of the hydride it forms. Alkali metals form ionic hydrides and have the formula AH. Transition elements form interstitial hydrides and have no definite stoichiometric formula, AHx. Covalent hydrides are formed by nonmetals and the formula depends on their group in the periodic table.
Interpretation Introduction
(c)
Interpretation:
Whether the hydrogen present as H+, H− or a covalently bonded H in KH should be determined.
Concept introduction:
The location of each element in the periodic table determines the formula of the hydride it forms. Alkali metals form ionic hydrides and have the formula AH. Transition elements form interstitial hydrides and have no definite stoichiometric formula, AHx. Covalent hydrides are formed by nonmetals and the formula depends on their group in the periodic table.
Interpretation Introduction
(d)
Interpretation:
Whether the hydrogen present as H+, H− or a covalently bonded H in HBr should be determined.
Concept introduction:
The location of each element in the periodic table determines the formula of the hydride it forms. Alkali metals form ionic hydrides and have the formula AH. Transition elements form interstitial hydrides and have no definite stoichiometric formula, AHx. Covalent hydrides are formed by nonmetals and the formula depends on their group in the periodic table.
Indicate the products obtained by mixing 2,2-dimethylpropanal with acetaldehyde and sodium ethoxide in ethanol.
Synthesize 2-Ethyl-3-methyloxirane from dimethyl(propyl)sulfonium iodide using the necessary organic or inorganic reagents. Draw the structures of the compounds.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.