Introduction to Algorithms
Introduction to Algorithms
3rd Edition
ISBN: 9780262033848
Author: Thomas H. Cormen, Ronald L. Rivest, Charles E. Leiserson, Clifford Stein
Publisher: MIT Press
Question
Book Icon
Chapter 22, Problem 1P

(a)

Program Plan Intro

To prove the breath first search properties in an undirected graph.

(a)

Expert Solution
Check Mark

Explanation of Solution

In the undirected graph, breath first search follow properties as:

Suppose in the undirected graph an edge ( u , v ) is consider as forward or back edge then vertex ‘ u’ should occur before vertex ‘ v’ and edges associated with ‘ u’ should be explore before any other edge in breath first search. Thus, the edge ( u , v ) can be considered as the tree edge because there is no forward and backward edge in undirected graph BFS traversal.

In the breath first search, an edge must be a tree if [v.π]=u and this can be possible if [v.d]=[u.d]+1 . In this values of [ u.d ] and [ v.d ] cannot be changed after initialization. So, in the breath first search [v.d]=[u.d]+1 .

Therefore for every tree edge ( u, v ) in breath first search, [v.d]=[u.d]+1 .

If vertex ‘ u’ visit before vertex ‘ v’ , and edge ( u, v ) is cross edge. As the properties of tree edge and cross edge, vertex ‘ u’ visit before vertex ‘ v’ that means vertex ‘ v’ must be in the queue. Hence, from the given statement, it will follow the condition for the cross edge ( u, v ):

Therefore, [v.d]=[u.d]+1 or [v.d]=[u.d].

(b)

Program Plan Intro

To prove the breath first search properties in the directed graph.

(b)

Expert Solution
Check Mark

Explanation of Solution

Breath first search properties in the directed graph as follows:

An edge ( u, v ) is not the tree edge if the given graph G is directed. So, the graph will not contain the forward edge ( u, v ).

In the breath first search, an edge must be a tree if [v.π]=u and this can be possible if [v.d]=[u.d]+1 . In this values of [ u.d ] and [ v.d ] cannot be change after initialization. So, in the breath first search [v.d]=[u.d]+1 . Therefore, for every tree edge ( u, v ) in breath first search, [v.d]=[u.d]+1 .

If vertex ‘ u’ visit before vertex ‘ v’ , and edge ( u, v ) is cross edge. As the properties of tree edge and cross edge, vertex ‘ u’ visit before vertex ‘ v’ that means vertex ‘ v’ must be in the queue. Hence, from the given statement, it will follow the condition for the cross edge ( u, v ):

Therefore, [v.d]=[u.d]+1 or [v.d]=[u.d] .

By seeing the above statements, it is clear for all vertices, 0[v.d] .

In the breath first search, back edge (u, v) where vertex ‘v’ is the ancestor of vertex ‘u’ and from the given vertices if the drawn edge is larger than the other. Hence, [v.d][u.d] .

Therefore, for every back edge (u, v), 0[v.d][u.d] .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The Horse table has the following columns: ID - integer, auto increment, primary key RegisteredName - variable-length string Breed - variable-length string Height - decimal number BirthDate - date Delete the following rows: Horse with ID 5 All horses with breed Holsteiner or Paint All horses born before March 13, 2013 To confirm that the deletes are correct, add the SELECT * FROM HORSE; statement.
Why is Linux popular? What would make someone choose a Linux OS over others? What makes a server? How is a server different from a workstation? What considerations do you have to keep in mind when choosing between physical, hybrid, or virtual server and what are the reasons to choose a virtual installation over the other options?
Objective  you will: 1. Implement a Binary Search Tree (BST) from scratch, including the Big Five (Rule of Five)  2. Implement the TreeSort algorithm using a in-order traversal to store sorted elements in a vector. 3. Compare the performance of TreeSort with C++'s std::sort on large datasets. Part 1: Understanding TreeSort How TreeSort Works TreeSort is a comparison-based sorting algorithm that leverages a Binary Search Tree (BST): 1. Insert all elements into a BST (logically sorting them). 2. Traverse the BST in-order to extract elements in sorted order. 3. Store the sorted elements in a vector.  Time Complexity Operation                                Average Case     Worst Case (Unbalanced Tree)Insertion                                     0(1log n)                0 (n)Traversal (Pre-order)                  0(n)                       0 (n)Overall Complexity                  0(n log n)                 0(n^2) (degenerated tree) Note: To improve performance, you could use a…
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Operations Research : Applications and Algorithms
Computer Science
ISBN:9780534380588
Author:Wayne L. Winston
Publisher:Brooks Cole
Text book image
Fundamentals of Information Systems
Computer Science
ISBN:9781305082168
Author:Ralph Stair, George Reynolds
Publisher:Cengage Learning
Text book image
CMPTR
Computer Science
ISBN:9781337681872
Author:PINARD
Publisher:Cengage
Text book image
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr
Text book image
C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning
Text book image
Principles of Information Systems (MindTap Course...
Computer Science
ISBN:9781285867168
Author:Ralph Stair, George Reynolds
Publisher:Cengage Learning