Magnitude (Normalized Gain) Magnitude (Normalized Gain) Magnitude (Gain in dB) 101 10² ་ ཨཱུ ྴ ་ སྦ་ 0.6 0.4 0.2 101 。 ོ ༅ བླླ ོ ྴ ོ༔ -10 -20 -30 -40 101 Low-pass Filter Magnitude Response (Normalized) X 159.155 Y 0.707 Cutoff: 159.15 Hz 103 Frequency (Hz) High-pass Filter Magnitude Response (Normalized) X 159.155 Y 0.707 Cutoff: 159.15 Hz 102 Lower Cutoff: 145.80 Hz 103 Frequency (Hz) Band-pass Filter Magnitude Response (dB) 102 103 Frequency (Hz) off: 1737.35 Hz X 1788.57 Y-3.16137 104 104 104 Low-pass Filter -Cutoff 159.15 Hz High-pass Filter -Cutoff 159.15 Hz Band-pass Filter - Lower Cutoff = 145.80 Hz - Upper Cutoff 1737.35 Hz 105 105 105
Magnitude (Normalized Gain) Magnitude (Normalized Gain) Magnitude (Gain in dB) 101 10² ་ ཨཱུ ྴ ་ སྦ་ 0.6 0.4 0.2 101 。 ོ ༅ བླླ ོ ྴ ོ༔ -10 -20 -30 -40 101 Low-pass Filter Magnitude Response (Normalized) X 159.155 Y 0.707 Cutoff: 159.15 Hz 103 Frequency (Hz) High-pass Filter Magnitude Response (Normalized) X 159.155 Y 0.707 Cutoff: 159.15 Hz 102 Lower Cutoff: 145.80 Hz 103 Frequency (Hz) Band-pass Filter Magnitude Response (dB) 102 103 Frequency (Hz) off: 1737.35 Hz X 1788.57 Y-3.16137 104 104 104 Low-pass Filter -Cutoff 159.15 Hz High-pass Filter -Cutoff 159.15 Hz Band-pass Filter - Lower Cutoff = 145.80 Hz - Upper Cutoff 1737.35 Hz 105 105 105
Principles of Information Systems (MindTap Course List)
12th Edition
ISBN:9781285867168
Author:Ralph Stair, George Reynolds
Publisher:Ralph Stair, George Reynolds
Chapter6: Telecommunications And Networks
Section: Chapter Questions
Problem 5SAT
Related questions
Question
My code is experincing minor issue where the text isn't in the proper place, and to ensure that the frequency cutoff is at the right place.
My code:
% Define frequency range for the plot
f = logspace(1, 5, 500); % Frequency range from 10 Hz to 100 kHz
w = 2 * pi * f; % Angular frequency
% Parameters for the filters - let's adjust these to get more reasonable cutoffs
R = 1e3; % Resistance in ohms (1 kΩ)
C = 1e-6; % Capacitance in farads (1 μF)
% For bandpass, we need appropriate L value for desired cutoffs
L = 0.1; % Inductance in henries - adjusted for better bandpass response
% Calculate cutoff frequencies first to verify they're in desired range
f_cutoff_RC = 1 / (2 * pi * R * C);
f_resonance = 1 / (2 * pi * sqrt(L * C));
Q_factor = (1/R) * sqrt(L/C);
f_lower_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) + 1/(2*Q_factor));
f_upper_cutoff = f_resonance / (sqrt(1 + 1/(4*Q_factor^2)) - 1/(2*Q_factor));
% Transfer functions
% Low-pass filter (RC)
H_low = 1 ./ (1 + 1i * w * R * C);
% High-pass filter (RC)
H_high = (1i * w * R * C) ./ (1 + 1i * w * R * C);
% Band-pass filter (RLC series)
% Corrected bandpass transfer function for series RLC
H_band = (R ./ (R + 1i*w*L + 1./(1i*w*C)));
% Normalize the gain for Low-pass and High-pass filters
H_low_normalized = abs(H_low) / max(abs(H_low));
H_high_normalized = abs(H_high) / max(abs(H_high));
H_band_dB = 20 * log10(abs(H_band) / max(abs(H_band)));
% Plot Magnitude Responses
figure('Position', [100, 100, 800, 600]);
% Low-pass Filter
subplot(3,1,1);
semilogx(f, H_low_normalized, 'b', 'LineWidth', 1.5);
hold on;
line([f_cutoff_RC f_cutoff_RC], [0, 0.707], 'Color', 'r', 'LineStyle', '--'); % Mark cutoff at -3dB
text(f_cutoff_RC*1.2, 0.6, sprintf('Cutoff: %.2f Hz', f_cutoff_RC), 'HorizontalAlignment', 'left');
title('Low-pass Filter Magnitude Response (Normalized)');
xlabel('Frequency (Hz)');
ylabel('Magnitude (Normalized Gain)');
grid on;
legend('Low-pass Filter', sprintf('Cutoff = %.2f Hz', f_cutoff_RC));
ylim([0 1.05]);
hold off;
% High-pass Filter
subplot(3,1,2);
semilogx(f, H_high_normalized, 'r', 'LineWidth', 1.5);
hold on;
line([f_cutoff_RC f_cutoff_RC], [0, 0.707], 'Color', 'r', 'LineStyle', '--'); % Mark cutoff at -3dB
text(f_cutoff_RC*1.2, 0.6, sprintf('Cutoff: %.2f Hz', f_cutoff_RC), 'HorizontalAlignment', 'left');
title('High-pass Filter Magnitude Response (Normalized)');
xlabel('Frequency (Hz)');
ylabel('Magnitude (Normalized Gain)');
grid on;
legend('High-pass Filter', sprintf('Cutoff = %.2f Hz', f_cutoff_RC));
ylim([0 1.05]);
hold off;
% Band-pass Filter
subplot(3,1,3);
semilogx(f, H_band_dB, 'g', 'LineWidth', 1.5);
hold on;
% Mark -3dB points (half power points)
yline(-3, 'k--');
line([f_lower_cutoff f_lower_cutoff], [-40, 0], 'Color', 'r', 'LineStyle', '--'); % Mark lower cutoff
line([f_upper_cutoff f_upper_cutoff], [-40, 0], 'Color', 'g', 'LineStyle', '--'); % Mark upper cutoff
text(f_lower_cutoff*0.7, -5, sprintf('Lower Cutoff: %.2f Hz', f_lower_cutoff), 'HorizontalAlignment', 'right');
text(f_upper_cutoff*1.2, -5, sprintf('Upper Cutoff: %.2f Hz', f_upper_cutoff), 'HorizontalAlignment', 'left');
title('Band-pass Filter Magnitude Response (dB)');
xlabel('Frequency (Hz)');
ylabel('Magnitude (Gain in dB)');
grid on;
legend('Band-pass Filter', sprintf('Lower Cutoff = %.2f Hz', f_lower_cutoff), sprintf('Upper Cutoff = %.2f Hz', f_upper_cutoff));
ylim([-40 5]);
hold off;

Transcribed Image Text:Magnitude (Normalized Gain)
Magnitude (Normalized Gain)
Magnitude (Gain in dB)
101
10²
་ ཨཱུ ྴ ་ སྦ་
0.6
0.4
0.2
101
。 ོ ༅ བླླ ོ ྴ ོ༔
-10
-20
-30
-40
101
Low-pass Filter Magnitude Response (Normalized)
X 159.155
Y 0.707
Cutoff: 159.15 Hz
103
Frequency (Hz)
High-pass Filter Magnitude Response (Normalized)
X 159.155
Y 0.707
Cutoff: 159.15 Hz
102
Lower Cutoff: 145.80 Hz
103
Frequency (Hz)
Band-pass Filter Magnitude Response (dB)
102
103
Frequency (Hz)
off: 1737.35 Hz
X 1788.57
Y-3.16137
104
104
104
Low-pass Filter
-Cutoff 159.15 Hz
High-pass Filter
-Cutoff 159.15 Hz
Band-pass Filter
- Lower Cutoff = 145.80 Hz
-
Upper Cutoff 1737.35 Hz
105
105
105
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 3 images

Recommended textbooks for you

Principles of Information Systems (MindTap Course…
Computer Science
ISBN:
9781285867168
Author:
Ralph Stair, George Reynolds
Publisher:
Cengage Learning

Systems Architecture
Computer Science
ISBN:
9781305080195
Author:
Stephen D. Burd
Publisher:
Cengage Learning

Enhanced Discovering Computers 2017 (Shelly Cashm…
Computer Science
ISBN:
9781305657458
Author:
Misty E. Vermaat, Susan L. Sebok, Steven M. Freund, Mark Frydenberg, Jennifer T. Campbell
Publisher:
Cengage Learning

Principles of Information Systems (MindTap Course…
Computer Science
ISBN:
9781285867168
Author:
Ralph Stair, George Reynolds
Publisher:
Cengage Learning

Systems Architecture
Computer Science
ISBN:
9781305080195
Author:
Stephen D. Burd
Publisher:
Cengage Learning

Enhanced Discovering Computers 2017 (Shelly Cashm…
Computer Science
ISBN:
9781305657458
Author:
Misty E. Vermaat, Susan L. Sebok, Steven M. Freund, Mark Frydenberg, Jennifer T. Campbell
Publisher:
Cengage Learning

A+ Guide to Hardware (Standalone Book) (MindTap C…
Computer Science
ISBN:
9781305266452
Author:
Jean Andrews
Publisher:
Cengage Learning