Concept explainers
A ray of light strikes a flat, 2.00-cm-thick block of glass (n = 1.50) at ail angle of 30.0° with respect to the normal (Fig. P22.18). (a) Find the angle of refraction at the lop surface. (b) Find the angle of incidence at the bottom surface and the refracted angle. (c) Find the lateral distance d by which the light beam is shifted. (d) Calculate the
(a)
Answer to Problem 18P
Explanation of Solution
From Snell’s law, at the first surface,
Here,
Substitute
Conclusion:
Thus, the angle of refraction at the top surface is
(b)
Answer to Problem 18P
Explanation of Solution
The upper surface and the lower surface are parallel, the angle of incidence at the lower surface will be
The angle of refraction is,
Substitute
Conclusion:
Thus, the angle of incidence at the bottom surface is
(c)
Answer to Problem 18P
Explanation of Solution
The following diagram shows the sketch of the path of the ray.
From the figure,
Also,
Thus, the lateral distance by which the light beam is shifted is,
Conclusion:
Thus, the lateral distance by which the light beam is shifted is
(d)
Answer to Problem 18P
Explanation of Solution
The equation for the speed of light in glass is,
Substitute
Conclusion:
Thus, the speed of light in the glass is
(e)
Answer to Problem 18P
Explanation of Solution
The equation for time required for the light to travel through the glass is,
Substitute
Conclusion:
Thus, the time required for the light to travel through the glass is
(f)
Answer to Problem 18P
Explanation of Solution
A change in the angle of incidence will cause a change in the angle of refraction. Thus, the distance the distance travelled by the light also changes. So, the travel time will also change.
Conclusion:
Yes, the travel time through the block is affected by the angle of incidence.
Want to see more full solutions like this?
Chapter 22 Solutions
College Physics:
- A beam of light both reflects andrefracts at the surface between airand glass, as shown in Figure P22.25.If the index of refraction of the glassis ng , find the angle of incidence, Θ1,in the air that would result in thereflected ray and the refracted raybeing perpendicular to each other.Hint: Remember the identity sin(90° - Θ) = cosΘ.arrow_forwardA parallel beam of light enters a glass hemisphere perpendicularto the flat face, as shown in Figure P23.53. The radius ofthe hemisphere is R = 6.00 cm, and the index of refraction isn = 1.56. Determine the point at which the beam is focused.(Assume paraxial rays; i.e., assume all rays are located closeto the principal axis.)arrow_forwardLight travels from air into an optical fiber with an index of refraction of 2.5. (a) In which direction does the light bend? (b) If the angle of incidence on the end of the fiber is 25o, what is the angle of refraction inside the fiber? ( c) Sketch the path of light as it changes media. n1 = 1.00 n2= 2.5arrow_forward
- glass of ethanol (n = 1.36) has an ice cube (n = 1.309) floating in it. A light beam in the ethanol goes into the ice cube at an angle of refraction of 85.0. Find (a) the angle of incidence in the ethanol and (b) the ratio of the wavelength of the light in ice to its wavelength in ethanol.arrow_forwardA block of crown glass is immersed in water as in the figure shown below. A light ray is incident on the top face at an angle of 0₁= = 43.0° with the normal and exits the block at point P. (Assume that x = 3.78 cm.) X P O 102 (a) Find the vertical distance y from the top of the block to P. cm (b) Find the angle of refraction of the light ray leaving the block at P.arrow_forwardA ray of light traveling through air encounters a 1.2-cm-thick sheet of glass at a 35° angle of incidence. How far does the light ray travel in the glass before emerging on the far side?arrow_forward
- A block of crown glass is immersed in water as in the figure below. A light ray is incident on the top face at an angle of 01 = 42° with the normal and exits the block at point P. 3.50 cm 01 02 (a) Find the vertical distance y from the top of the block to P, (b) Find the angle of refraction 62 of the light ray leaving the block at P.arrow_forwardThe critical angle for total internal reflection at a liquid-air interface is 42.5◦.at. If a ray of light traveling in the liquid has an angle of incidence at the interface of 35◦,what angle does the ray refracted in air make with the normal?b. If a ray of light traveling through air has an angle of incidence at the interfaces of 35◦, what angle does the ray refracted in the liquid make with the normal?arrow_forwardA light ray traveling in air strikes the surface of a slab of glass at an angle of incidence of 50°, Part of the light is reflected and part is refracted.. Find the angle the refracted ray makes with respect to the normal to the airiglass interface. For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac). B IUS Paragraph Arial 10pt * G自Q x X, ४ ४ + ABC 田 日田田国 Í (1} © © O OWORDS POWERED BY TINY Sve All Answers Speand Submit 7 AM Click Save and Submit to save and submit, Click Save All Answers to save all answers. R. W 田 国arrow_forward
- A light ray travels from air (n=1.00) into a crown glass (n=1.52) with an angle of incidence of 49 degrees. The light ray continues to travel through the crown glass material into the diamond (n=2.42). At what angle does the light ray make with the normal line as it enters the diamond?arrow_forwardA piece of glass (n=1.50) is submerged under water (n=1.33). A ray of light starts in the glass and hitsthe surface between the glass and water at an angle 23° from the normal to the surface (while still inthe glass). What is the angle between the light path and the normal when the ray enters the water?arrow_forwardChoose the correct statement regarding light traveling in air and glass mediums. Assume that the angle of incidence is not perpendicular to the surface. Refractive index of air is nair=1.00029; refractive index of glass is nglass=1.517. For light traveling from glass to air, the ray becomes bent toward the normal. O Light travels at a slower speed in air than in glass. For light traveling from air to glass, the ray becomes bent away from the normal. O For light traveling from air to glass, the incidence angle is larger than the refraction angle. O For light traveling from glass to air, the refraction angle is smaller than the incidence angle. Submit Answer Tries 0/2 Post Discussion Send Feedbaclarrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning