College Physics:
11th Edition
ISBN: 9781305965515
Author: SERWAY, Raymond A.
Publisher: Brooks/Cole Pub Co
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 22, Problem 30P
The index of refraction for crown glass is 1.512 at a wavelength of 660 nm (red), whereas its index of refraction is 1.530 at a wavelength of 410 nm (violet). If both wavelengths are incident on a slab of crown glass at the same angle of incidence, 60.0°, what is the angle of refraction for each wavelength?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A ray of sunlight is passing from diamond into crown glass; the angle of incidence is 30.00°. The indices of refraction for
the blue and red components of the ray are: blue (ndiamond = 2.444, ncrown glass = 1.531), and red (ndiamond = 2.410,
ncrown glass = 1.520). Determine the angle between the refracted blue and red rays in the crown glass.
%3D
Additional Materials
eBook
398
1,375
APR
21
étv
MacBook Air
80
esc
F5
F6
F7
F1
F2
F3
F4
#3
%$4
%
&
1
2
3.
4
Y
くO
Using filters, a technician has created a beam of light consisting of three wavelengths: 400 nm (violet), 500 nm (green), and 650 nm (red). She aims the beam so that it passes through air and then enters a block of crown glass. The beam enters the glass at an incidence angle of
?1 = 45.8°.
The glass block has the following indices of refraction for the respective wavelengths in the light beam.
wavelength (nm)
400
500
650
index of refraction
n400 nm = 1.53
n500 nm = 1.52
n650 nm = 1.51
(a)
Upon entering the glass, are all three wavelengths refracted equally, or is one bent more than the others?
(b)
What are the respective angles of refraction (in degrees) for the three wavelengths? (Enter each value to at least two decimal places.)
(i)
?400 nm
°
(ii)
?500 nm
°
(iii)
?650 nm
°
Using filters, a technician has created a beam of light consisting of three wavelengths: 400 nm (violet), 500 nm (green), and 650 nm (red). She aims the beam so that it passes through air and then enters a block of crown glass. The beam enters the glass at an incidence angle of
?1 = 23.4°.
The glass block has the following indices of refraction for the respective wavelengths in the light beam.
wavelength (nm)
400
500
650
index of refraction
n400 nm = 1.53
n500 nm = 1.52
n650 nm = 1.51
(a)
Upon entering the glass, are all three wavelengths refracted equally, or is one bent more than the others?
400 nm light is bent the most500 nm light is bent the most 650 nm light is bent the mostall colors are refracted alike
(b)
What are the respective angles of refraction (in degrees) for the three wavelengths? (Enter each value to at least two decimal places.)
(i)
?400 nm
°
(ii)
?500 nm
°
(iii)
?650 nm
Chapter 22 Solutions
College Physics:
Ch. 22.2 - Which part of Figure 22.3, (a) or (b), better...Ch. 22.2 - Prob. 22.2QQCh. 22.3 - A material has an index of refraction that...Ch. 22.3 - As light travels from a vacuum (n = 1) to a medium...Ch. 22 - Prob. 1CQCh. 22 - A ray of light passes from one material into a...Ch. 22 - Prob. 3CQCh. 22 - Prob. 4CQCh. 22 - Determine whether each of the following statements...Ch. 22 - A type of mirage called a pingo is often observed...
Ch. 22 - In dispersive materials, the angle of refraction...Ch. 22 - The level of water in a clear, colorless glass can...Ch. 22 - Prob. 9CQCh. 22 - Light in medium A undergoes a total internal...Ch. 22 - Prob. 11CQCh. 22 - Try this simple experiment on your own. Take two...Ch. 22 - Prob. 13CQCh. 22 - Prob. 14CQCh. 22 - A light ray containing both blue and red...Ch. 22 - During the Apollo XI Moon landing, a...Ch. 22 - Prob. 2PCh. 22 - Prob. 3PCh. 22 - Prob. 4PCh. 22 - Prob. 5PCh. 22 - Find the speed of light in (a) water, (b) crown...Ch. 22 - A ray of light travels from air into another...Ch. 22 - Prob. 8PCh. 22 - An underwater scuba diver sees the Sun at an...Ch. 22 - Prob. 10PCh. 22 - A laser beam is incident at an angle of 30.0 to...Ch. 22 - Light containing wavelengths of 400. nm, 500. nm,...Ch. 22 - A ray of light is incident on the surface of a...Ch. 22 - Prob. 14PCh. 22 - The light emitted by a helium-neon laser has a...Ch. 22 - Figure P22.16 shows a light ray traveling in a...Ch. 22 - Prob. 17PCh. 22 - A ray of light strikes a flat, 2.00-cm-thick block...Ch. 22 - Prob. 19PCh. 22 - Prob. 20PCh. 22 - A man shines a flashlight from a boat into the...Ch. 22 - A narrow beam of ultra-sonic waves reflects off...Ch. 22 - A person looking into an empty container is able...Ch. 22 - Prob. 24PCh. 22 - Prob. 25PCh. 22 - Prob. 26PCh. 22 - An opaque cylindrical tank with an open top has a...Ch. 22 - A certain kind of glass has an index of refraction...Ch. 22 - The index of refraction for red light in water is...Ch. 22 - The index of refraction for crown glass is 1.512...Ch. 22 - A light beam containing red and violet wavelengths...Ch. 22 - Prob. 32PCh. 22 - A ray of light strikes the midpoint of one face of...Ch. 22 - For light of wavelength 589 nm. calculate the...Ch. 22 - Repeat Problem 34, but this time assume the...Ch. 22 - A beam of light is incident from air on the...Ch. 22 - Prob. 37PCh. 22 - Prob. 38PCh. 22 - A light ray is incident normally to the long face...Ch. 22 - Prob. 40PCh. 22 - A room contains air in which the speed of sound is...Ch. 22 - Prob. 42PCh. 22 - The light beam in Figure P22.43 strikes surface 2...Ch. 22 - Prob. 44PCh. 22 - A layer of ice having parallel sides floats on...Ch. 22 - A ray of light is incident at an angle 30.0 on a...Ch. 22 - When a man stands near the edge of an empty...Ch. 22 - Prob. 48APCh. 22 - Refraction causes objects submerged in water to...Ch. 22 - A narrow beam of light is incident from air onto a...Ch. 22 - Prob. 51APCh. 22 - Endoscopes are medical instruments used to examine...Ch. 22 - A piece of wire is bent through an angle . The...Ch. 22 - Prob. 54APCh. 22 - Prob. 55APCh. 22 - Prob. 56APCh. 22 - Prob. 57APCh. 22 - Students allow a narrow beam of laser light to...Ch. 22 - Prob. 59APCh. 22 - Three sheets of plastic have unknown indices of...Ch. 22 - A person swimming underwater on a bright day and...Ch. 22 - Prob. 62AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Light traveling in a medium of index of refraction n1 is incident on another medium having an index of refraction n2. Under which of the following conditions can total internal reflection occur at the interface of the two media? (a) The indices of refraction have the relation n2 n1. (b) The indices of refraction have the relation n1 n2. (c) Light travels slower in the second medium than in the first. (d) The angle of incidence is less than the critical angle. (e) The angle of incidence must equal the angle of refraction.arrow_forwardConsider a beam of light from the left entering a prism of apex angle as shown in Figure P34.34. Two angles of incidence, 1, and 3, are shown as Hell as two angles of refraction, 2 and 4. Show that = 1 + 3. Figure P34.34arrow_forwardThe index of refraction for water is about 43. What happens as a beam of light travels from air into water? (a) Its speed increases to 43c, and its frequency decreases. (b) Its speed decreases to 34c, and its wavelength decreases by a factor of 34. (c) Its speed decreases to 34c, and its wavelength increases by a factor of 43. (d) Its speed and frequency remain the same. (e) Its speed decreases to 34c, and its frequency increases.arrow_forward
- The end of a solid glass rod of refractive index 1.50 is polished to have the shape of a hemispherical surface of radius 1.0 cm. A small object is placed in air (refractive index 1.00) on the axis 5.0 cm to the left of the vertex. Determine the position of the image.arrow_forwardHow many times will the incident beam in Figure P34.33 (page 922) be reflected by each of the parallel mirrors? Figure P34.33arrow_forwardA ray of light strikes a flat, 2.00-cm-thick block of glass (n = 1.50) at ail angle of 30.0 with respect to the normal (Fig. P22.18). (a) Find the angle of refraction at the lop surface. (b) Find the angle of incidence at the bottom surface and the refracted angle. (c) Find the lateral distance d by which the light beam is shifted. (d) Calculate the speed of light in the glass and (e) the time required for the light to pass through the glass block. (f) Is the travel time through the block affected by the angle of incidence? Explain.arrow_forward
- For specular reflection, what is the situation with an angle of incidence of (a) 0 and (b) 90?arrow_forwardLight enters a prism of crown glass and refracts at an angle of 5.00 with respect to the normal at the interface. The crown glass has a mean index of refraction of 1.51. It is combined with one flint glass prism (n = 1.65) to produce no net deviation. a. Find the apex angle of the flint glass. b. Assume the index of refraction for violet light (v = 430 nm) is nv = 1.528 and the index of refraction for red light (r = 768 nm) is nr = 1.511 for crown glass. For flint glass using the same wavelengths, nv = 1.665 and nr = 1.645. Find the net dispersion.arrow_forwardUsing filters, a technician has created a beam of light consisting of three wavelengths: 400 nm (violet), 500 nm (green), and 650 nm (red). He aims the beam so that it passes through air and then enters a block of crown glass. The beam enters the glass at an incidence angle of ?1 = 46.1°. The glass block has the following indices of refraction for the respective wavelengths in the light beam. wavelength (nm) 400 500 650 index of refraction n400 nm = 1.53 n500 nm = 1.52 n650 nm = 1.51 b) What are the respective angles of refraction (in degrees) for the three wavelengths? (Enter each value to at least two decimal places.) (i) ?400 nm (ii) ?500 nm (iii) ?650 nmarrow_forward
- Using filters, a physicist has created a beam of light consisting of three wavelengths: 400 nm (violet), 500 nm (green), and 650 nm (red). She aims the beam so that it passes through air and then enters a block of crown glass. The beam enters the glass at an incidence angle of ?1 = 31.5°. The glass block has the following indices of refraction for the respective wavelengths in the light beam. wavelength (nm) 400 500 650 index of refraction n400 nm = 1.53 n500 nm = 1.52 n650 nm = 1.51 (a) Upon entering the glass, are all three wavelengths refracted equally, or is one bent more than the others? (b) What are the respective angles of refraction (in degrees) for the three wavelengths? (Enter each value to at least two decimal places.) (i) ?400 nm (ii) ?500 nm (iii) ?650 nmarrow_forwardA light beam travels from air, through olive oil, and then into water. If the angle of refraction ?2 for the light in the olive oil is 30.6°, determine the angle of incidence ?1 in air and the angle of refraction ?3 in water. The index of refraction for olive oil is 1.47.arrow_forwardUsing filters, a technician has created a beam of light that consists of three wavelengths: 400 nm (violet), 500 nm (green), and 650 nm (red). He aims the beam so that it passes through air and then enters a block of crown glass. The beam enters the glass at an incidence angle of ?1 = 47.4°. The glass block has the following indices of refraction for the respective wavelengths in the light beam. wavelength (nm) 400 500 650 index of refraction n400 nm = 1.53 n500 nm = 1.52 n650 nm = 1.51 (a) Upon entering the glass, are all three wavelengths refracted equally, or is one bent more than the others? 400 nm light is bent the most500 nm light is bent the most 650 nm light is bent the mostall colors are refracted alike (b) What are the respective angles of refraction (in degrees) for the three wavelengths? (Enter each value to at least two decimal places.) (i) ?400 nm ° (ii) ?500 nm ° (iii) ?650 nm °arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Laws of Refraction of Light | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4l2thi5_84o;License: Standard YouTube License, CC-BY