Physics for Scientists and Engineers
Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 21, Problem 86P

(a)

To determine

The charge on the sphere.

(a)

Expert Solution
Check Mark

Explanation of Solution

Given:

The radius of the microsphere is 5.50×107m .

The Magnitude of electric field is 6.00×104N/m .

The magnitude of the drag force is 6πηrv .

The viscosity of the air is 1.8×105N.s/m2 .

The density of the polystyrene is 1.05×103kg/m3 .

Formula used:

Write the expression for the downward and upward force.

  FEmgFd=may ....... (1)

Here, FE is the electric force, m is the mass, g is acceleration due to gravity, Fd is the drag force.

Write the expression for the force.

  F=qE

Here, F is the force, q is the charge and E is the electric field.

Write the expression for the mass.

  m=ρV

Here, ρ is the density and V is the volume.

Substitute qE for FE , ρV for m , 0 for ay and 6πηrv for Fd in equation (1).

  qEρVg6πηrv=0 ....... (2)

Write the expression for the charge.

  q=Ne

Here, q is the total charge, N is the number of particles and e is the charge on particle.

Write the expression for the volume of the sphere.

  V=43πr3

Here, r is the radius.

Substitute Ne for q and 43πr3 for V in equation (2).

  NeEρ(43πr3)g6πηrv=0

Solve the above equation for Ne .

  Ne=43πr3ρg+6πηrvE ....... (3)

Calculation:

Substitute 5.50×107m for r , 1.05×103kg/m3 for ρ , 9.81m/s2 for g , 1.8×105N.s/m2 for η , 1.16×104m/s for v and 6.00×104N/m for E in equation (3).

  Ne=43π ( 5.50× 10 7 m )31.05× 103kg/ m 3( 9.81m/ s 2 )+6π5.50× 107( 1.8× 10 5 N.s/ m 2 )1.16× 10 4m/s6.00× 104N/mNe=4.8×1019C

Conclusion:

Thus, the charge on the sphere is 4.8×1019C .

(b)

To determine

The number of excess electron on the sphere.

(b)

Expert Solution
Check Mark

Explanation of Solution

Given:

The radius of the microsphere is 5.50×107m .

The Magnitude of electric field is 6.00×104N/m .

The magnitude of the drag force is 6πηrv .

The viscosity of the air is 1.8×105N.s/m2 .

The density of the polystyrene is 1.05×103kg/m3 .

Formula used:

Write the expression for the downward and upward force.

  FEmgFd=may

Here, FE is the electric force, m is the mass, g is acceleration due to gravity, Fd is the drag force.

Write the expression for the force.

  F=qE

Here, F is the force, q is the charge and E is the electric field.

Write the expression for the mass.

  m=ρV

Here, ρ is the density and V is the volume.

Substitute qE for FE , ρV for m , 0 for ay and 6πηrv for Fd in equation (1).

  qEρVg6πηrv=0

Write the expression for the charge.

  q=Ne

Here, q is the total charge, N is the number of particles and e is the charge on particle.

Write the expression for the volume of the sphere.

  V=43πr3

Here, r is the radius.

Substitute Ne for q and 43πr3 for V in equation (2).

  NeEρ(43πr3)g6πηrv=0

Solve the above equation for N .

  N=43πr3ρg+6πηrvEe ....... (4)

Calculation:

Substitute 5.50×107m for r , 1.05×103kg/m3 for ρ , 9.81m/s2 for g , 1.8×105N.s/m2 for η , 1.16×104m/s for v and 6.00×104N/m for E and 1.602×1019C for e in equation (3).

  N=43π ( 5.50× 10 7 m )31.05× 103kg/ m 3( 9.81m/ s 2 )+6π5.50× 107( 1.8× 10 5 N.s/ m 2 )1.16× 10 4m/s( 1.602× 10 19 C)6.00× 104N/mN=3

Conclusion:

Thus, the number of excess electron on the sphere is 3.

(c)

To determine

The new terminal speed.

(c)

Expert Solution
Check Mark

Explanation of Solution

Given:

The radius of the microsphere is 5.50×107m .

The Magnitude of electric field is 6.00×104N/m .

The magnitude of the drag force is 6πηrv .

The viscosity of the air is 1.8×105N.s/m2 .

The density of the polystyrene is 1.05×103kg/m3 .

Formula used:

Write the expression for the forces when electric field is upward.

  FdFEmg=0 ....... (5)

Here, FE is the electric force, m is the mass, g is acceleration due to gravity, Fd is the drag force.

Write the expression for the force.

  F=eE

Here, F is the force, e is the charge and E is the electric field.

Write the expression for the mass.

  m=ρV

Here, ρ is the density and V is the volume.

Substitute qE for FE , ρV for m , 43πr3 for V and 6πηrv for Fd in equation (1).

  6πηrvNeE(43πr3)ρg=0

Solve the above equation for v .

  v=NeE+(43πr3)ρg6πηr ....... (6)

Calculation:

Substitute 5.50×107m for r , 1.05×103kg/m3 for ρ , 9.81m/s2 for g , 1.8×105N.s/m2 for η , 3 for N , 6.00×104N/m for E and 1.602×1019C for e in equation (3).

  v=3( 1.602× 10 19 C)6.00× 104N/m+( 4 3 π ( 5.50× 10 7 m ) 3 )( 1.05× 10 3 kg/ m 3 )9.81m/ s 26π( 1.8× 10 5 N.s/ m 2 )5.50× 107mv=0.19mm/s

Conclusion:

Thus, the new terminal speed is 0.19mm/s .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A 1.40-kg object slides to the right on a surface having a coefficient of kinetic friction 0.250 (Figure a). The object has a speed of v₁ = 3.50 m/s when it makes contact with a light spring (Figure b) that has a force constant of 50.0 N/m. The object comes to rest after the spring has been compressed a distance d (Figure c). The object is then forced toward the left by the spring (Figure d) and continues to move in that direction beyond the spring's unstretched position. Finally, the object comes to rest a distance D to the left of the unstretched spring (Figure e). d m v=0 -D- www (a) Find the distance of compression d (in m). m (b) Find the speed v (in m/s) at the unstretched position when the object is moving to the left (Figure d). m/s (c) Find the distance D (in m) where the object comes to rest. m (d) What If? If the object becomes attached securely to the end of the spring when it makes contact, what is the new value of the distance D (in m) at which the object will come to…
As shown in the figure, a 0.580 kg object is pushed against a horizontal spring of negligible mass until the spring is compressed a distance x. The force constant of the spring is 450 N/m. When it is released, the object travels along a frictionless, horizontal surface to point A, the bottom of a vertical circular track of radius R = 1.00 m, and continues to move up the track. The speed of the object at the bottom of the track is VA = 13.0 m/s, and the object experiences an average frictional force of 7.00 N while sliding up the track. R (a) What is x? m A (b) If the object were to reach the top of the track, what would be its speed (in m/s) at that point? m/s (c) Does the object actually reach the top of the track, or does it fall off before reaching the top? O reaches the top of the track O falls off before reaching the top ○ not enough information to tell
A block of mass 1.4 kg is attached to a horizontal spring that has a force constant 900 N/m as shown in the figure below. The spring is compressed 2.0 cm and is then released from rest. wwww wwwwww a F x = 0 0 b i (a) A constant friction force of 4.4 N retards the block's motion from the moment it is released. Using an energy approach, find the position x of the block at which its speed is a maximum. ст (b) Explore the effect of an increased friction force of 13.0 N. At what position of the block does its maximum speed occur in this situation? cm

Chapter 21 Solutions

Physics for Scientists and Engineers

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY