Concept explainers
(a)
The magnitude and direction of the electric field.
(a)
Answer to Problem 45P
The components of the resultant electric field are
The magnitude of the resultant electric field
Explanation of Solution
Introduction:
Electric field,
Also, two similar charges repel each other and opposite charges attract each other with equal and opposite force.
A charge
Figure 1: Two charges q1 and q2 are placed at the given co-ordinates, and the electric fieldis to be determined due to thetwo given charges is to be found at point P.
Now at point A, the positive charge
The distance between points A and B is
The distance between points P and B is
The distance between points P and A is
Figure 2: The field lines due the two charges at point P and the resultant of the field.
Electric field at distance r from a charge q is given by
Cosine law is used to find the angle
Putting the values from equation, we get
Now, to find the resultant angle, just focus on the filed lines shown in Figure 3.
Figure 3: The resultant field
Now the using the parallelogram theorem, we can find the resultant of the field
and
The resultant angle is calculated as below:
In order to find the angle of resultant electric field, trigonometry is used as shown in Figure 4:
Figure 4: The angle of resultant electric field with the x axis
The angle of the
Thus, the
Conclusion:
The components of the resultant electric field is
The magnitude of the resultant electric field
(b)
The magnitude and direction of the force of the proton.
(b)
Answer to Problem 45P
The components of the resultant force is :
The magnitude of the resultant force is
Explanation of Solution
Introduction:
The electric force between two charges
Also, two similar charges repel each other and opposite charges attract each other with equal and opposite force.
A charge
There is an attractive force on the proton due to charge
Figure 5: Forces acting on the proton placed at point P
The resultant force acting on the proton will be:
The direction of the force will be the same as of the field calculated in the previous section.
Conclusion:
The components of the resultant force is :
The magnitude of the resultant force is
Want to see more full solutions like this?
Chapter 21 Solutions
Physics for Scientists and Engineers
- the cable may break and cause severe injury. cable is more likely to break as compared to the [1] ds, inclined at angles of 30° and 50° to the vertical rings by way of a scaled diagram. [4] I 30° T₁ 3cm 3.8T2 cm 200 N 50° at it is headed due North and its airspeed indicat 240 km/h. If there is a wind of 100 km/h from We e relative to the Earth? [3]arrow_forwardCan you explain this using nodal analysis With the nodes I have present And then show me how many KCL equations I need to write, I’m thinking 2 since we have 2 dependent sourcesarrow_forwardstate the difference between vector and scalar quarrow_forward
- Please don't use Chatgpt will upvote and give handwritten solutionarrow_forwardNo chatgpt pls will upvotearrow_forwardThe shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along its axis. 5.6 m. 4 m- B Part A Determine the compressive force along leg AB. Express your answer to three significant figures and include the appropriate units. FAB = Value Submit Request Answer Part B Units ? Determine the compressive force along leg CB. Express your answer to three significant figures and include the appropriate units. FCB= Value Submit Request Answer Part C ? Units Determine the tension in the winch cable DB. Express your answer with the appropriate units. 2marrow_forward
- Part A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?arrow_forwardThe particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-arrow_forwardThe 10-lb weight is supported by the cord AC and roller and by the spring that has a stiffness of k = 10 lb/in. and an unstretched length of 12 in. as shown in. Part A Determine the distance d to maintain equilibrium. Express your answer in inches to three significant figures. 節 ΕΠΙ ΑΣΦ d = *k J vec 5 t 0 ? d C A in. 12 in. Barrow_forward
- The members of a truss are connected to the gusset plate as shown in . The forces are concurrent at point O. Take = 90° and T₁ = 7.5 kN. Part A Determine the magnitude of F for equilibrium. Express your answer to three significant figures and include the appropriate units. F = Value Submit Request Answer Part B 0 ? Units Determine the magnitude of T2 for equilibrium. Express your answer to three significant figures and include the appropriate units. ? T₂ = Value Units T₁ Carrow_forwardpls help on botharrow_forwardpls helparrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning