Physics for Scientists and Engineers
Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 21, Problem 43P

(a)

To determine

The magnitude and direction of electric field at (1.0m,0) .

(a)

Expert Solution
Check Mark

Explanation of Solution

Given:

The magnitude of the first point charge is 5.0μC .

The position of the first point charge is (4.0m,2m) .

The magnitude of the second point charge is 12μC .

The position of the second point charge is (1.0m,0m) .

Formula used:

Write the expression for the resultant electric field at point P .

  EP=E1+E2 ..................(1)

Here, EP is the electric field at point P , E1 is the electric field due to the q1 charge and E2 is the electric field due to q2 charge.

Write the expression for the electric field due to charge q1 .

  E1=kq1r1,P2r^1,P ..................(2)

Here, k is constant, q1 is the first charge and r1,P is the distance between the point P and the first charge.

Write the expression for the electric field due to charge q2 .

  E2=kq2r2,P2r^2,P ..................(3)

Here, k is constant, q2 is the first charge and r2,P is the distance between the point P and the second charge.

Calculation:

Substitute 8.988×109Nm2/C2 for k , 5.0μC for q1 , 5.0m and 2m for r1,P in equation (1).

  E1=8.988× 109N m 2/ C 2( 5.0μC) ( 5.0m )2+ ( 2.0m )2[( 5.0m) i ^+( 2.0m) j ^ ( 5.0m ) 2 + ( 2.0m ) 2 ]E1=1.55×103N/C(0.928i^+0.371j^)E1=(1.44kN/C)i^(0.575kN/C)j^

Substitute 8.988×109Nm2/C2 for k , 12.0μC for q1 , 2.0m and 2.0m for r1,P in equation (2).

  E2=8.988× 109N m 2/ C 2( 12.0μC) ( 2.0m )2+ ( 2.0m )2[( 2.0m) i ^+( 2.0m) j ^ ( 5.0m ) 2 + ( 2.0m ) 2 ]E2=13.5×103N/C(0.707i^0.707j^)E2=(9.54kN/C)i^(9.54kN/C)j^

Substitute (1.44kN/C)i^(0.575kN/C)j^ for E1 and (9.54kN/C)i^(9.54kN/C)j^ for E2 in equation (1).

  EP=(1.44kN/C)i^(0.575kN/C)j^+(9.54kN/C)i^(9.54kN/C)j^EP=(8.10kN/C)i^(10.1kN/C)j^

The Magnitude of electric field is:

  EP= ( 8.10 kN/C )2 ( 10.1 kN/C )2EP=13kN/C

Direction of electric field is:

  θ=tan1( 8.10 kN/C 10.1 kN/C )θ=230°

Conclusion:

The magnitude and direction of electric field is 13kN/C and the direction is 230° .

(b)

To determine

The magnitude and direction of electric force.

(b)

Expert Solution
Check Mark

Explanation of Solution

Given:

The magnitude of the first point charge is 5.0μC .

The position of the first point charge is (4.0m,2m) .

The magnitude of the second point charge is 12μC .

The position of the second point charge is (1.0m,0m) .

Formula used:

Write the expression for the force.

  F=qE ..................(4)

Here, F is the force, q is the charge and E is the electric field.

Calculation:

Substitute (8.10kN/C)i^(10.1kN/C)j^ for E and 1.602×1019C for q in equation (4).

  F=1.602×1019C(( 8.10 kN/C )i^( 10.1 kN/C )j^)F=(1.30× 10 15N)i^+(1.62× 10 15N)j^

The magnitude of force is:

  F= ( 1.30× 10 15 N )2+ ( 1.62× 10 15 N )2F=2.1×1015N

The direction of electric force is:

  θ=tan1( 1.62× 10 15 N 1.30× 10 15 N)θ=53°

Conclusion:

The magnitude and direction of force is 2.1×1015N and 53° respectively.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The shear leg derrick is used to haul the 200-kg net of fish onto the dock as shown in. Assume the force in each leg acts along its axis. 5.6 m. 4 m- B Part A Determine the compressive force along leg AB. Express your answer to three significant figures and include the appropriate units. FAB = Value Submit Request Answer Part B Units ? Determine the compressive force along leg CB. Express your answer to three significant figures and include the appropriate units. FCB= Value Submit Request Answer Part C ? Units Determine the tension in the winch cable DB. Express your answer with the appropriate units. 2m
Part A (Figure 1) shows a bucket suspended from a cable by means of a small pulley at C. If the bucket and its contents have a mass of 10 kg, determine the location of the pulley for equilibrium. The cable is 6 m long. Express your answer to three significant figures and include the appropriate units. Figure 4 m B НА x = Value Submit Request Answer Provide Feedback < 1 of 1 T 1 m Units ?
The particle in is in equilibrium and F4 = 165 lb. Part A Determine the magnitude of F1. Express your answer in pounds to three significant figures. ΑΣΦ tvec F₁ = Submit Request Answer Part B Determine the magnitude of F2. Express your answer in pounds to three significant figures. ΑΣΦ It vec F2 = Submit Request Answer Part C Determine the magnitude of F3. Express your answer in pounds to three significant figures. ? ? lb lb F₂ 225 lb 135° 45° 30° -60°-

Chapter 21 Solutions

Physics for Scientists and Engineers

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY