(a)
The impedance of the circuit containing a heating coil and an ultra-capacitor connected in series to a 60.0 Hz 120 V rms supply.

Answer to Problem 81QAP
The impedance of the circuit containing a heating coil and an ultra-capacitor connected in series to a 60.0 Hz 120 V rms supply is 2.18 O.
Explanation of Solution
Given:
Number of windings in the coil
Length of the coil
Diameter of the coil
Resistance of the coil
Capacitance of the capacitor
Frequency of the supply
The rms voltage of the supply
Formula used:
The heating coil behaves as an inductor. The inductance L of the coil is given by,
Here,
And r is the radius of the coil.
Therefore, the inductance is given by,
The impedance of the circuit is given by,
Calculation:
Determine the value of inductance of the heating coil by substituting the values of variables in equation (1).
Substitute the value of the known variables in equation (2) and calculate the value of impedance.
Conclusion:
Thus, the impedance of the circuit containing a heating coil and an ultra-capacitor connected in series to a 60.0 Hz 120 V rms supply is 2.18 O.
(b)
The rms current through of the circuit containing a heating coil and an ultra-capacitor connected in series to a 60.0 Hz 120 V rms supply.

Answer to Problem 81QAP
The rms current through of the circuit containing a heating coil and an ultra-capacitor connected in series to a 60.0 Hz 120 V rms supply is 55 A.
Explanation of Solution
Given:
The rms voltage of the supply
Impedance
Formula used:
The rms current flowing in the circuit is given by,
Calculation:
Calculate the rms value of the current by substituting the given values of variables in the formula.
Conclusion:
Thus the rms current through of the circuit containing a heating coil and an ultra-capacitor connected in series to a 60.0 Hz 120 V rms supply is 55 A.
(c)
The peak value of current in the circuit.

Answer to Problem 81QAP
The peak value of current in the circuit is 77.7 A.
Explanation of Solution
Given:
The rms value of current
Formula used:
The peak value of current is given by,
Calculation:
Calculate the value of the peak current by substituting the value of
Conclusion:
Thus the peak value of current in the circuit is 77.7 A.
Want to see more full solutions like this?
Chapter 21 Solutions
COLLEGE PHYSICS LL W/ 6 MONTH ACCESS
- a 500-n block is dragged along a horizontal surface by an applied force t at an angle of 30.0° (see figure). the coefficient of kinetic friction is uk = 0.400 and the block moves at a constant velocity. what is the magnitude of the applied force T in newtons?arrow_forwarda 500-n block is dragged along a horizontal surface by an applied force t at an angle of 30.0° (see figure). the coefficient of kinetic friction is uk = 0.400 and the block moves at a constant velocity. what is the magnitude of the applied force T in newtons?arrow_forwardBlock A, with a mass of 10 kg, rests on a 30° incline. The coefficient of kinetic friction is 0.20. The attached string is parallel to the incline and passes over a massless, frictionless pulley at the top. Block B, with a mass of 15.0 kg. is attached to the dangling end of the string. What is the acceleration of Block B in m/s? show all steps pleasearrow_forward
- When current is flowing through the coil, the direction of the torque can be thought of in two ways. Either as the result of the forces on current carrying wires, or as a magnetic dipole moment trying to line up with an external field (e.g. like a compass). Note: the magnetic moment of a coil points in the direction of the coil's magnetic field at the center of the coil. d) Forces: We can consider the left-most piece of the loop (labeled ○) as a short segment of straight wire carrying current directly out of the page at us. Similarly, we can consider the right-most piece of the loop (labeled ) as a short segment straight wire carrying current directly into the page, away from us. Add to the picture below the two forces due to the external magnetic field acting on these two segments. Then describe how these two forces give a torque and determine if the torque acts to rotate the loop clockwise or counterclockwise according to this picture? Barrow_forwardIn each of the following, solve the problem stated. Express your answers in three significant figures. No unit is considered incorrect. 1. For the circuit shown, determine all the currents in each branch using Kirchhoff's Laws. (3 points) 6 5V 2 B C 4 A www 6 VT ww T10 V F E 2. Compute for the total power dissipation of the circuit in previous item. (1 point) 3. Use Maxwell's Mesh to find Ix and VAB for the circuit shown. (3 points) Ix 50 V 20 ww 21x B 4. Calculate all the currents in each branch using Maxwell's Mesh for the circuit shown. (3 points) www 5ი 10 24V 2A 2002 36Varrow_forwardIf the mass of substance (1 kg), initial temperature (125˚C), the final temperature (175˚C) and the total volume of a closed container (1 m3) remains constant in two experiments, but one experiment is done with water ( ) and the other is done with nitrogen ( ). What is the difference in the change in pressure between water and nitrogen?arrow_forward
- Using the simplified energy balance in Equation 1, suppose there is heat transfer of 40.00 J to a system, while the system does 10.00 J of work. Later, there is heat transfer of 25.00 J out of the system while 4.00 J of work is done on the system. What is the net change in internal energy of the system?arrow_forwardYou pour a litre (1 kg) of 25.0˚C water into a 0.500 kg aluminium pan off the stove, but has previously been heated so it starts with a temperature of 120˚C. What is the temperature when the water and the pan reach thermal equilibrium (i.e., what is the temperature of both objects when they reach the same temperature)? Assume that the pan is placed on an insulated pad and a negligible amount of water boils off.arrow_forwardA golf club hits a golf ball and the golf ball’s flight reaches a maximum height of 5.48 m. Calculate the momentum of the golf ball at the maximum height if the mass of the golf ball is 0.459 kg.arrow_forward
- • Superposition Theorem • Thevenin's and Norton's Theorem 1. Find the unknown voltage V₁, unknown resistances R1 and R2, and currents flowing through R1 and R2 for the circuit shown below using Superposition Theorem. 40 V + R₁₂ w B C ♥16A 10A www 4A F ww 2 E Ꭰ 2. Use Thevenin's Theorem to find the current flowing in 3-ohm resistor and its power dissipation from the circuit shown in the right. + 3. Use Norton's Theorem for the same instruction as for No. 2. 8 V A www 202 B wwww 20 Ω 10 V + 302 202 www C - 12 V 502 www.arrow_forwardFill in blanksarrow_forwardA rock is dropped from a height of 2.00 m. Determine the velocity of the rock just before it hits the ground. If the momentum of the rock just before hitting the ground is 14.0 kg m/s, what is the mass of the rock? Is the collision between the rock and the ground elastic or inelastic? Explain.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





