COLLEGE PHYSICS LL W/ 6 MONTH ACCESS
COLLEGE PHYSICS LL W/ 6 MONTH ACCESS
2nd Edition
ISBN: 9781319414597
Author: Freedman
Publisher: MAC HIGHER
bartleby

Concept explainers

Question
Book Icon
Chapter 21, Problem 64QAP
To determine

(a)

The peak value of the current and average power delivered when a sinusoidal voltage of 40.0 V rms and a frequency of 100 Hz is applied to a 100 O resistor.

Expert Solution
Check Mark

Answer to Problem 64QAP

When a sinusoidal voltage of 40.0 V rms and a frequency of 100 Hz is applied to a 100 O resistor, the peak current is found to be 0.57 A and the average power delivered is 16 W.

Explanation of Solution

Given:

  R=100 ΩVrms=40.0 Vf=100 Hz

Formula used:

The peak value of current imax in an ac circuit is given by,

  imax=2irms......(1)

Here, the rms value of current irms is given by,

  irms=VrmsR......(2)

The average power dissipated in the circuit is given by,

  Pav=Vrmsirms......(3)

Calculation:

Calculate the rms value of current irms by substituting the values of the variables in equation (2).

  irms=VrmsR=40.0 V100 Ω=0.40 A

Calculate the value of peak current using equation (1).

  imax=2irms=2(0.40 A)=0.57 A

Calculate the average power delivered using equation (3).

  Pav=Vrmsirms=(40.0 V)(1.2 A)=16 W

Conclusion;Thus, when a sinusoidal voltage of 40.0 V rms and a frequency of 100 Hz is applied to a 100 O resistor, the peak current is found to be 0.57 A and the average power delivered is 16 W.

To determine

(b)

The peak value of the current and average power delivered when a sinusoidal voltage of 40.0 V rms and a frequency of 100 Hz is applied to a 0.200 H inductor.

Expert Solution
Check Mark

Answer to Problem 64QAP

When a sinusoidal voltage of 40.0 V rms and a frequency of 100 Hz is applied to a 0.200 H inductor, the peak current is found to be 0.45A and the average power delivered is 0 W.

Explanation of Solution

Given:

  L=0.200 HVrms=40.0 Vf=100 Hz

Formula used:

The peak value of current imax in an ac circuit is given by,

  imax=2irms......(1)

Here, the rms value of current irms is given by,

  irms=Vrms2πfL......(4)

The average power dissipated in the circuit is given by,

  Pav=Vrmsirmscosϕ......(5)

Here, ϕ is the phase difference between current and voltage.

Calculation:

Calculate the rms value of current irms by substituting the values of the variables in equation (4).

  irms=Vrms2πfL=40.0 V2(3.14)(100 Hz)(0.200 H)=0.32 A

Calculate the value of peak current using equation (1).

  imax=2irms=2(0.32 A)=0.45 A

Calculate the average power delivered using equation (5). The phase difference between voltage and current in a ac circuit containing an inductor is 90o

  ϕ=90°

Therefore, since cos90°=0

  Pav=Vrmsirmscosϕ=0

Conclusion;Thus, when a sinusoidal voltage of 40.0 V rms and a frequency of 100 Hz is applied to a 0.200 H inductor, the peak current is found to be 0.45A and the average power delivered is 0 W.

To determine

(c)

The peak value of the current and average power delivered when a sinusoidal voltage of 40.0 V rms and a frequency of 100 Hz is applied to a 50.0 μF capacitor.

Expert Solution
Check Mark

Answer to Problem 64QAP

When a sinusoidal voltage of 40.0 V rms and a frequency of 100 Hz is applied to a 50.0 μF capacitor, the peak current is found to be 1.8 A and the average power delivered is 0 W.

Explanation of Solution

Given:

  L=50.0 μF=50.0×106FVrms=40.0 Vf=100 Hz

Formula used:

The peak value of current imax in an ac circuit is given by,

  imax=2irms......(1)

Here, the rms value of current irms is given by,

  irms=2πfCVrms......(6)

The average power dissipated in the circuit is given by,

  Pav=Vrmsirmscosϕ......(3)

Here, ϕ is the phase difference between current and voltage.

Calculation:

Calculate the rms value of current irms by substituting the values of the variables in equation (6).

  irms=2πfCVrms=2(3.14)(100 Hz)(50.0×106F)(40.0 V)=1.256 A

Calculate the value of peak current using equation (1).

  imax=2irms=2(1.256 A)=1.776 A=1.8 A

Calculate the average power delivered using equation (5). The phase difference between voltage and current in a ac circuit containing a capacitor is 90o

  ϕ=90°

Therefore, since cos90°=0

  Pav=Vrmsirmscosϕ=0

Conclusion;Thus, when a sinusoidal voltage of 40.0 V rms and a frequency of 100 Hz is applied to a 50.0 μF capacitor, the peak current is found to be 1.8 A and the average power delivered is 0 W.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A rectangle measuring 30.0 cm by 40.0 cm is located inside a region of a spatially uniform magnetic field of 1.70 T , with the field perpendicular to the plane of the coil (the figure (Figure 1)). The coil is pulled out at a steady rate of 2.00 cm/s traveling perpendicular to the field lines. The region of the field ends abruptly as shown. Find the emf induced in this coil when it is all inside the field, when it is partly in the field, and when it is fully outside. Please show all steps.
A rectangular circuit is moved at a constant velocity of 3.00 m/s into, through, and then out of a uniform 1.25 T magnetic field, as shown in the figure (Figure 1). The magnetic field region is considerably wider than 50.0 cm . Find the direction (clockwise or counterclockwise) of the current induced in the circuit as it is going into the magnetic field (the first case), totally within the magnetic field but still moving (the second case), and moving out of the field (the third case).  Find the magnitude of the current induced in the circuit as it is going into the magnetic field . Find the magnitude of the current induced in the circuit as it is totally within the magnetic field but still moving. Find the magnitude of the current induced in the circuit as it is moving out of the field. Please show all steps
Shrinking Loop. A circular loop of flexible iron wire has an initial circumference of 161 cm , but its circumference is decreasing at a constant rate of 15.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 1.00 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop. Find the magnitude of the emf E induced in the loop after exactly time 9.00 s has passed since the circumference of the loop started to decrease. Find the direction of the induced current in the loop as viewed looking along the direction of the magnetic field. Please explain all steps

Chapter 21 Solutions

COLLEGE PHYSICS LL W/ 6 MONTH ACCESS

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning