In an early model of the hydrogen atom (the Bohr model ), the electron orbits the proton in uniformly circular motion. The radius of the circle is restricted ( quantized ) to certain values given by r = n 2 a 0 , for n = 1, 2, 3, …, where a 0 = 52.92 pm. What is the speed of the electron if it orbits in (a) the smallest allowed orbit and (b) the second smallest orbit? (c) If the electron moves to larger orbits, does its speed increase, decrease, or stay the same?
In an early model of the hydrogen atom (the Bohr model ), the electron orbits the proton in uniformly circular motion. The radius of the circle is restricted ( quantized ) to certain values given by r = n 2 a 0 , for n = 1, 2, 3, …, where a 0 = 52.92 pm. What is the speed of the electron if it orbits in (a) the smallest allowed orbit and (b) the second smallest orbit? (c) If the electron moves to larger orbits, does its speed increase, decrease, or stay the same?
In an early model of the hydrogen atom (the Bohr model), the electron orbits the proton in uniformly circular motion. The radius of the circle is restricted (quantized) to certain values given by
r = n2a0, for n = 1, 2, 3, …,
where a0 = 52.92 pm. What is the speed of the electron if it orbits in (a) the smallest allowed orbit and (b) the second smallest orbit? (c) If the electron moves to larger orbits, does its speed increase, decrease, or stay the same?
Definition Definition Force on a body along the radial direction. Centripetal force is responsible for the circular motion of a body. The magnitude of centripetal force is given by F C = m v 2 r m = mass of the body in the circular motion v = tangential velocity of the body r = radius of the circular path
SARET CRKS AUTOWAY
12. A stone is dropped from the top of a cliff. It is seen to hit the ground below
after 3.55 s. How high is the cliff?
13. A ball is dropped from rest at the top of a building that is 320 m tall. Assuming
no air resistance, what is the speed of the ball just before it strikes the ground?
14. Estimate (a) how long it took King Kong to fall straight down from the top
of the Empire State Building (280m high), and (b) his velocity just before
"landing".
Useful equations
For Constant Velocity:
V =>
D
X = V₁t + Xo
For Constant Acceleration:
Vr = V + at
X = Xo+Vot +
v=V+2a(X-Xo)
\prom = V +V
V velocity
t = time
D Distance
X = Final Position
Xo Initial Position
V = Final Velocity
Vo Initial Velocity
a = acceleration
For free fall
Yf
= Final Position
Yo Initial Position
g = 9.80
m
$2
For free fall:
V = V + gt
Y=Yo+Vo t +
+gt
V,² = V₁²+2g (Y-Yo)
V+Vo
Vprom=
2
6
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.