Chemistry
3rd Edition
ISBN: 9780073402734
Author: Julia Burdge
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 21, Problem 67AP
Interpretation Introduction
Interpretation:
The number of photons absorbed at the given wavelength per secondis to becalculated.
Concept introduction:
Frequency is defined as the number of waves passing through a particular period of time.
The distance between two same crests or trough is known as wavelength.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Ozone molecules in the stratosphere absorb much of the harmful radiation from the sun. How many ozone molecules are present in 4.00 L of air under the stratospheric ozone conditions of 249 K temperature and 1.67 × 10−3 atm pressure?
Ozone 1O32 is formed in the earth’s upper atmosphere by the action of solar radiation on oxygen molecules 1O22. Write a balanced equation for the formation of ozone from oxygen.
A 0.0665 g sample of aluminum metal reacts with hydrochloric acid to give 90.5 mL of hydrogen gas at 23 oC and an atmospheric pressure of 756 mm Hg. The hydrogen gas is collected over water.
Write a balanced chemical equation for the reaction between solid aluminum metal and aqueous hydrochloric acid.
Using stoichiometry, determine the theoretical yield of hydrogen gas (in moles) that will be produced by the complete reaction of the aluminum metal.
Refer to Table 1 and calculate the partial pressure of hydrogen gas.
Temperature
Pressure
Temperature
Pressure
Temperature
Pressure
16 °C
14 mm Hg
21 °C
19 mm Hg
26 °C
24 mm Hg
17 °C
15 mm Hg
22 °C
20 mm Hg
27 °C
25 mm Hg
18 °C
16 mm Hg
23 °C
21 mm Hg
28 °C
26 mm Hg
19 °C
17 mm Hg
24 °C
22 mm Hg
29 °C
27 mm Hg
20 °C
18 mm Hg
25 °C
23 mm Hg
30 °C
28 mm Hg
Using the Ideal Gas Law, determine the experimental moles of hydrogen gas…
Chapter 21 Solutions
Chemistry
Ch. 21.1 - Practice Problem ATTEMPT Calculate the wavelength...Ch. 21.1 - Practice Problem BUILD Which of the following...Ch. 21.1 - Prob. 1PPCCh. 21.1 - Prob. 1CPCh. 21.1 - Prob. 2CPCh. 21.2 - Practice Problem ATTEMPT which of the following is...Ch. 21.2 - Practice Problem BUILD Both O 2 and O 3 exhibit...Ch. 21.2 - Prob. 1PPCCh. 21.2 - 21.2.1 What maximum wavelength (in nm) of fight is...Ch. 21.2 - What process gives rise to the aurora borealis and...
Ch. 21.3 - Prob. 1PPACh. 21.3 - Practice Problem BUILD How long will it take for...Ch. 21.3 - Prob. 1PPCCh. 21.8 - Prob. 1CPCh. 21.8 - Prob. 2CPCh. 21 - Prob. 1QPCh. 21 - Prob. 2QPCh. 21 - Prob. 3QPCh. 21 - Prob. 4QPCh. 21 - Referring to Table 21.1, calculate the mole...Ch. 21 - Prob. 6QPCh. 21 - Prob. 7QPCh. 21 - Calculate the mass (in kg) of nitrogen, oxygen,...Ch. 21 - 21.9 What process gives rise to the aurora...Ch. 21 - Prob. 10QPCh. 21 - The highly reactive OH radical (a species with an...Ch. 21 - The green color observed in the aurora borealis is...Ch. 21 - Prob. 13QPCh. 21 - Prob. 14QPCh. 21 - Prob. 15QPCh. 21 - Prob. 16QPCh. 21 - What causes the polar ozone holes?Ch. 21 - How do volcanic eruptions contribute to ozone...Ch. 21 - Prob. 19QPCh. 21 - Discuss the effectiveness of some of the CFC...Ch. 21 - Prob. 21QPCh. 21 - Prob. 22QPCh. 21 - Prob. 23QPCh. 21 - Prob. 24QPCh. 21 - Prob. 25QPCh. 21 - Prob. 26QPCh. 21 - Prob. 27QPCh. 21 - Prob. 28QPCh. 21 - Prob. 29QPCh. 21 - Prob. 30QPCh. 21 - Prob. 31QPCh. 21 - Prob. 32QPCh. 21 - Describe three human activities that generate...Ch. 21 - Prob. 34QPCh. 21 - Prob. 35QPCh. 21 - Prob. 36QPCh. 21 - What effects do CFCs and their substitutes have on...Ch. 21 - Why are CFCs more effective greenhouse gases than...Ch. 21 - Prob. 39QPCh. 21 - Calcium oxide or quicklime ( CaO ) is used in...Ch. 21 - Prob. 41QPCh. 21 - 21.42 List three detrimental effects of acid...Ch. 21 - 21.43 Briefly discuss two industrial processes...Ch. 21 - Discuss ways to curb acid rain.Ch. 21 - Prob. 45QPCh. 21 - Prob. 46QPCh. 21 - Prob. 47QPCh. 21 - Identify the gas that is responsible for the brown...Ch. 21 - 21.49 The safety limits of ozone and carbon...Ch. 21 - Prob. 50QPCh. 21 - Prob. 51QPCh. 21 - 21.52 The gas-phase decomposition of peroxyacetyl...Ch. 21 - 21.53 On a smoggy day in a certain city. the ozone...Ch. 21 - Prob. 54QPCh. 21 - What is the best way to deal with indoor...Ch. 21 - Why is it dangerous to idle a car's engine in a...Ch. 21 - Prob. 57QPCh. 21 - Prob. 58QPCh. 21 - Prob. 59QPCh. 21 - Prob. 60APCh. 21 - Prob. 61APCh. 21 - Prob. 62APCh. 21 - Prob. 63APCh. 21 - Prob. 64APCh. 21 - 21.65 How are past temperatures determined from...Ch. 21 - The balance between SO 2 and SO 3 is important in...Ch. 21 - Prob. 67APCh. 21 - 21.68 A glass of water initially at pH 7.0 is...Ch. 21 - Prob. 69APCh. 21 - 21.70 Instead of monitoring carbon dioxide,...Ch. 21 - Describe the removal of SO 2 by CaO (to form CaSO...Ch. 21 - 21.72 Which of the following settings is the most...Ch. 21 - Prob. 73APCh. 21 - Peroxyacetyl nitrate (PAN) undergoes thermal...Ch. 21 - Prob. 75APCh. 21 - Prob. 76APCh. 21 - 21.77 The carbon dioxide level in the atmosphere...Ch. 21 - Prob. 78APCh. 21 - Prob. 79APCh. 21 - 21.80 A person was found dead of carbon monoxide...Ch. 21 - Prob. 81APCh. 21 - Prob. 82APCh. 21 - The molar heat capacity of a diatomic molecule is...Ch. 21 - Prob. 84APCh. 21 - Prob. 85APCh. 21 - Prob. 86APCh. 21 - Prob. 1SEPPCh. 21 - Prob. 2SEPPCh. 21 - Prob. 3SEPPCh. 21 - Prob. 4SEPP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- An electric power station annually burns 3.5 × 107 kg of coal containing 2.4 percent sulfur by mass. Calculate the volume of SO2 emitted at STP. V = ? × 10 ? Larrow_forwardThe eruption of volcano Mt. Tambora in 1816 increased Earth's albedo by 0.009525. By how much (in K) did Earth's average surface temperature decrease? Use the following expression (from Hites, page133), to account for the greenhouse effect (AE): OT4 = (1-a)/4 +AE. Assume initial values for T = 288 K, o = 5.67*10^8 Wm-2 k-4, a= 0.30, and = 1372 Wm-2arrow_forwardDetermine the temperature (in K) at which the density of ozone (O3) is 0.646 g/L at a pressure of 565 mmHg.arrow_forward
- Ozone molecules in the stratosphere absorb much of the harmful radiation from the sun. How many ozone molecules are present in 1.00 L of air under the stratospheric ozone conditions of 271 K temperature and 1.59 ×10−3 atm pressure? ×10 moleculesarrow_forwardA flask contains a mixture of neon (Ne), krypton (Kr), and radon (Rn) gases. Compare (a) the average kinetic energies of the three types of atoms and (b) the root-mean-square speeds. (Hint: Appendix D shows the molar mass (in g>mol) of each element under the chemical symbol for that element.)arrow_forwardHow many grams of oxygen are required to produce 60.1 g of water vapor?arrow_forward
- Write the overall balanced reaction equation to oxidize sodium cyanide using ozone (O3).arrow_forwardTh e Canadian Ambient Air Quality Objectivefor ground-level ozone is 82 ppb. What is themaximum mass of ozone, O3(g), allowed per cubicmetre of air? Th e density of air is 1.2 kg/m3.arrow_forwardHow do chemists know that none of the individual Lewis structures of ozone are not accurate depictions of an ozone molecule, and how is this discrepancy addressed?arrow_forward
- Mass of copper before electrolysis 5.621 g Mass of copper after electrolysis 5.487 g Volume of H2 collected 53.6 mL Pressure of H2, PH2 727.0 mm Hg Temperature 21.3 oC 1. Determine and report the pressure of collected hydrogen gas in atmospheres. Report this result to one more digit than allowed by applying the rules of significant figures. (1 atm = 760 mm Hg, an exact conversion factor.) 2. Determine the moles of hydrogen collected by substituting the appropriate quantities into the ideal gas equation and solving. Report this result to one more digit than allowed by applying the rules of significant figures. Notes: the gas temperature is the same as the listed temperature; R = 0.082057 L-atm/mol-K. Be mindful of units. 3. Determine the experimental atomic mass of Cu. Round this result to the correct number of significant figures. 4. Determine the percent relative error (= ????????????−?ℎ????????? ?ℎ????????? ? 100). The molar mass of Cu is 63.546 g/mol.arrow_forwardA student, following the procedure described to evaluate the Gas Law Constant, collected the following data in an exercise: mass Mg, g 0.0243 final gas volume, mL 25.0 barometric pressure, torr 754 vapor pressure of H2O at 25 °C 23.76 temperature, K 298 a) The gas collected in the eudiometer is a mixture of hydrogen and water vapor. Calculate the gas law constant. b) What would be the volume of hydrogen gas produced by the reaction of 0.243 g of magnesium metal and collected at 750 torr (corrected pressure) and 298 K? Use the value of R found in question A. 2. The results of this experiment are greatly affected by the care with which each of the steps is completed. a) Describe the error that would occur if the magnesium were to slide into the HCl(aq) in the beaker before the eudiometer is sealed off. b) What would be the effect on the results of a rise in the room temperature from 21.5℃, when determination #1 was done, to 25.8℃, when determination #2 was…arrow_forward3. Hydrochloric acid is a strong acid that can be used to make sodium chloride and a weak acid, nitrous acid. Write the balanced chemical equation of this reaction. (You can use the information in part b to help you determine states), b. Using the information below determine the AºHrn of the gencration of nitrous acid and sodium chloride. 2NACI (s) + H;O (1) → 2HCI (aq) + Na;O (aq) AH, = 507.1 kJ/mol NO (g) + NO2 (g) → Na;O (aq) + 2NaNO; (aq) AH,n = -427.4 kJ/mol NO (g) + NO2 (g) →N20 (g) + AHrxn = -42.8 kJ/mol (8) 2HNO2 (aq) → N20 (g) + O2 (g) + H2O (I) AHrn = 34.2 kJ/molarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781285199023Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781285199023
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning