Concept explainers
Decimal Data: Batting Averages The following data represent baseball batting averages for a random sample of National League players neat the end of the baseball season. the data are from the baseball statistics section of the Denver Post.
0.194 | 0.258 | 0.190 | 0.291 | 0.158 | 0.295 | 0.261 | 0.250 | 0.181 |
0.125 | 0.107 | 0.260 | 0.309 | 0.309 | 0.276 | 0.287 | 0.317 | 0.252 |
0.215 | 0.250 | 0.246 | 0.260 | 0.265 | 0.182 | 0.113 | 0.200 |
(a) Multiply each data value by 1000 to “clear” the decimals.
(b) Use the standard procedares of this section to make a frequency table and histogram with your whole-number data. Use five classes.
(c) Divide class limits, class boundaries, and class midpoints by 1000 to get back to your original dat.
(a)
![Check Mark](/static/check-mark.png)
To find: The decimal data that are multiply with 1000 for each value in the data..
Answer to Problem 22P
Solution: The data multiply with 1000 for each value in the data is as follows:
Data | Data*100 | Data | Data*100 |
0.194 | 194 | 0.309 | 309 |
0.258 | 258 | 0.276 | 276 |
0.19 | 190 | 0.287 | 287 |
0.291 | 291 | 0.317 | 317 |
0.158 | 158 | 0.252 | 252 |
0.295 | 295 | 0.215 | 215 |
0.261 | 261 | 0.25 | 250 |
0.25 | 250 | 0.246 | 246 |
0.181 | 181 | 0.26 | 260 |
0.125 | 125 | 0.265 | 265 |
0.107 | 107 | 0.182 | 182 |
0.26 | 260 | 0.113 | 113 |
0.309 | 309 | 0.2 | 200 |
Explanation of Solution
Calculation: The data represent baseball batting averages for a random sample of National League players near the end of the baseball season and there are 26 values in the data set. To find the whole number data by multiplying 1000 is obtained as follows:
Data | Data*100 | Data | Data*100 |
0.194 | 0.309 | 309 | |
0.258 | 0.276 | 276 | |
0.19 | 0.287 | 287 | |
0.291 | 291 | 0.317 | 317 |
0.158 | 158 | 0.252 | 252 |
0.295 | 295 | 0.215 | 215 |
0.261 | 261 | 0.25 | 250 |
0.25 | 250 | 0.246 | 246 |
0.181 | 181 | 0.26 | 260 |
0.125 | 125 | 0.265 | 265 |
0.107 | 107 | 0.182 | 182 |
0.26 | 260 | 0.113 | 113 |
0.309 | 309 | 0.2 | 200 |
Interpretation: Hence, the data multiply with 1000 is as follows:
Data | Data*100 | Data | Data*100 |
0.194 | 194 | 0.309 | 309 |
0.258 | 258 | 0.276 | 276 |
0.19 | 190 | 0.287 | 287 |
0.291 | 291 | 0.317 | 317 |
0.158 | 158 | 0.252 | 252 |
0.295 | 295 | 0.215 | 215 |
0.261 | 261 | 0.25 | 250 |
0.25 | 250 | 0.246 | 246 |
0.181 | 181 | 0.26 | 260 |
0.125 | 125 | 0.265 | 265 |
0.107 | 107 | 0.182 | 182 |
0.26 | 260 | 0.113 | 113 |
0.309 | 309 | 0.2 | 200 |
(b)
![Check Mark](/static/check-mark.png)
To find: The standard frequency table for the data set..
Answer to Problem 22P
Solution: The complete frequency table is as:
Class limits | Class boundaries | Midpoints | Freq | Relative freq | Cumulative freq |
46-85 | 45.5-85.5 | 65.5 | 4 | 0.12 | 4 |
86-125 | 85.5-125.5 | 105.5 | 5 | 0.16 | 9 |
126-165 | 125.5-165.5 | 145.5 | 10 | 0.31 | 19 |
166-205 | 165.5-205.5 | 185.5 | 5 | 0.16 | 24 |
206-245 | 205.5-245.5 | 225.5 | 5 | 0.16 | 29 |
246-285 | 245.5-285.5 | 265.5 | 3 | 0.09 | 32 |
Explanation of Solution
Calculation: To find the class width for the whole data of 26 values, it is observed that largest value of the data set is 317 and the smallest value is 107 in the data. Using 5 classes, the class width calculated in the following way:
The value is round up to the nearest whole number. Hence, the class width of the data set is 43. The class width for the data is 43 and the lowest data value (107) will be the lower class limit of the first class. Because the class width is 43, it must add 43 to the lowest class limit in the first class to find the lowest class limit in the second class. There are 5 desired classes. Hence, the class limits are 107–149, 150–192, 193–235, 236–278, and 279–321. Now, to find the class boundaries subtract 0.5 from lower limit of every class and add 0.5 to the upper limit of the every class interval. Hence, the class boundaries are 106.5–149.5, 149.5–192.5, 192.5–235.5, 235.5-278.5, and 278.5-321.5.
Next to find the midpoint of the class is calculated by using formula,
Midpoint of first class is calculated as:
The frequencies for respective classes are 3, 4, 3, 10, and 6.
Relative frequency is calculated by using the formula
The frequency for first class is 3 and total frequencies are 26 so the relative frequency is
The calculated frequency table is as follows:
Class limits | Class boundaries | Midpoints | freq | relative freq |
107-149 | 106.5-149.5 | 128 | 3 | 0.12 |
150-192 | 149.5-192.5 | 171 | 4 | 0.15 |
193-235 | 192.5-235.5 | 214 | 3 | 0.12 |
236-278 | 235.5-278.5 | 257 | 10 | 0.38 |
279-321 | 278.5-321.5 | 300 | 6 | 0.23 |
Graph: To construct the histogram by using the MINITAB, the steps are as follows:
Step 1: Enter the class boundaries in C1 and frequency in C2.
Step 2: Go to Graph > Histogram > Simple.
Step 3: Enter C1 in Graph variable then go to Data options > Frequency > C2.
Step 4: Click on OK.
The obtained histogram is
Interpretation: Hence, the complete frequency table is as follows:
Class limits | Class boundaries | Midpoints | Freq | Relative freq |
107-149 | 106.5-149.5 | 128 | 3 | 0.12 |
150-192 | 149.5-192.5 | 171 | 4 | 0.15 |
193-235 | 192.5-235.5 | 214 | 3 | 0.12 |
236-278 | 235.5-278.5 | 257 | 10 | 0.38 |
279-321 | 278.5-321.5 | 300 | 6 | 0.23 |
(c)
![Check Mark](/static/check-mark.png)
To find: The class limits, class boundaries, and midpoints in the frequency table by dividing 1000..
Answer to Problem 22P
Solution: The frequency table of original data is as follows:
Class limits | Class boundaries | Midpoints | |
0.107-0.149 | 0.1065-0.1495 | 0.128 | |
0.149-0.192 | 0.1495-0.1925 | 0.171 | |
0.193-0.235 | 0.1925-0.2355 | 0.214 | |
0.236-0.278 | 0.2355-0.2785 | 0.257 | |
0.279-0.321 | 0.2785-0.3215 | 0.3 |
Explanation of Solution
Calculation: The frequency table for whole number is obtained in above part. It is the data that multiply each value by 1000 to ‘clear’ decimals from the data. The frequency table for whole number is as follows:
Class limits | Class boundaries | Midpoints | Freq | Relative freq |
107–149 | 106.5–149.5 | 128 | 3 | 0.12 |
150–192 | 149.5–192.5 | 171 | 4 | 0.15 |
193–235 | 192.5–235.5 | 214 | 3 | 0.12 |
236–278 | 235.5–278.5 | 257 | 10 | 0.38 |
279–321 | 278.5–321.5 | 300 | 6 | 0.23 |
To find the decimal or original data, divide the class limits, class boundaries, and midpoints by 1000. The calculation as follows:
Class limits | Class boundaries | Midpoints | |
0.107–0.149 | 0.1065–0.1495 | 0.128 | |
0.149–0.192 | 0.1495–0.1925 | 0.171 | |
0.193–0.235 | 0.1925–0.2355 | 0.214 | |
0.236–0.278 | 0.2355–0.2785 | 0.257 | |
0.279–0.321 | 0.2785–0.3215 | 0.3 |
Interpretation: Hence, the data divide by 1000 is as follows:
Class limits | Class boundaries | Midpoints | |
0.107–0.149 | 0.1065–0.1495 | 0.128 | |
0.149–0.192 | 0.1495–0.1925 | 0.171 | |
0.193–0.235 | 0.1925–0.2355 | 0.214 | |
0.236–0.278 | 0.2355–0.2785 | 0.257 | |
0.279–0.321 | 0.2785–0.3215 | 0.300 |
Want to see more full solutions like this?
Chapter 2 Solutions
UNDERSTANDING BASIC STAT LL BUND >A< F
- A history teacher interviewed a random sample of 80 students about their preferences in learning activities outside of school and whether they are considering watching a historical movie at the cinema. 69 answered that they would like to go to the cinema. Let p represent the proportion of students who want to watch a historical movie. Determine the maximal margin of error. Use α = 0.05. Round your answer to three decimal places. arrow_forwardA random sample of medical files is used to estimate the proportion p of all people who have blood type B. If you have no preliminary estimate for p, how many medical files should you include in a random sample in order to be 99% sure that the point estimate will be within a distance of 0.07 from p? Round your answer to the next higher whole number.arrow_forwardA clinical study is designed to assess the average length of hospital stay of patients who underwent surgery. A preliminary study of a random sample of 70 surgery patients’ records showed that the standard deviation of the lengths of stay of all surgery patients is 7.5 days. How large should a sample to estimate the desired mean to within 1 day at 95% confidence? Round your answer to the whole number.arrow_forward
- A clinical study is designed to assess the average length of hospital stay of patients who underwent surgery. A preliminary study of a random sample of 70 surgery patients’ records showed that the standard deviation of the lengths of stay of all surgery patients is 7.5 days. How large should a sample to estimate the desired mean to within 1 day at 95% confidence? Round your answer to the whole number.arrow_forwardIn the experiment a sample of subjects is drawn of people who have an elbow surgery. Each of the people included in the sample was interviewed about their health status and measurements were taken before and after surgery. Are the measurements before and after the operation independent or dependent samples?arrow_forwardiid 1. The CLT provides an approximate sampling distribution for the arithmetic average Ỹ of a random sample Y₁, . . ., Yn f(y). The parameters of the approximate sampling distribution depend on the mean and variance of the underlying random variables (i.e., the population mean and variance). The approximation can be written to emphasize this, using the expec- tation and variance of one of the random variables in the sample instead of the parameters μ, 02: YNEY, · (1 (EY,, varyi n For the following population distributions f, write the approximate distribution of the sample mean. (a) Exponential with rate ẞ: f(y) = ß exp{−ßy} 1 (b) Chi-square with degrees of freedom: f(y) = ( 4 ) 2 y = exp { — ½/ } г( (c) Poisson with rate λ: P(Y = y) = exp(-\} > y! y²arrow_forward
- 2. Let Y₁,……., Y be a random sample with common mean μ and common variance σ². Use the CLT to write an expression approximating the CDF P(Ỹ ≤ x) in terms of µ, σ² and n, and the standard normal CDF Fz(·).arrow_forwardmatharrow_forwardCompute the median of the following data. 32, 41, 36, 42, 29, 30, 40, 22, 25, 37arrow_forward
- Task Description: Read the following case study and answer the questions that follow. Ella is a 9-year-old third-grade student in an inclusive classroom. She has been diagnosed with Emotional and Behavioural Disorder (EBD). She has been struggling academically and socially due to challenges related to self-regulation, impulsivity, and emotional outbursts. Ella's behaviour includes frequent tantrums, defiance toward authority figures, and difficulty forming positive relationships with peers. Despite her challenges, Ella shows an interest in art and creative activities and demonstrates strong verbal skills when calm. Describe 2 strategies that could be implemented that could help Ella regulate her emotions in class (4 marks) Explain 2 strategies that could improve Ella’s social skills (4 marks) Identify 2 accommodations that could be implemented to support Ella academic progress and provide a rationale for your recommendation.(6 marks) Provide a detailed explanation of 2 ways…arrow_forwardQuestion 2: When John started his first job, his first end-of-year salary was $82,500. In the following years, he received salary raises as shown in the following table. Fill the Table: Fill the following table showing his end-of-year salary for each year. I have already provided the end-of-year salaries for the first three years. Calculate the end-of-year salaries for the remaining years using Excel. (If you Excel answer for the top 3 cells is not the same as the one in the following table, your formula / approach is incorrect) (2 points) Geometric Mean of Salary Raises: Calculate the geometric mean of the salary raises using the percentage figures provided in the second column named “% Raise”. (The geometric mean for this calculation should be nearly identical to the arithmetic mean. If your answer deviates significantly from the mean, it's likely incorrect. 2 points) Starting salary % Raise Raise Salary after raise 75000 10% 7500 82500 82500 4% 3300…arrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forward
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
![Text book image](https://www.bartleby.com/isbn_cover_images/9781680331141/9781680331141_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168994/9781938168994_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780079039897/9780079039897_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780547587776/9780547587776_smallCoverImage.jpg)